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Abstract 
 

The vibrations of Euler-Bernoulli beams on elastic foundations, in Winkler`s model, submitted to 

axial load and dynamic external forces are study. The elastic beam is considered to have 

continuous mass witch concludes that systems have ∞ dynamical degree of freedom. The presents of 

axial load determines geometrically nonlinear vibrations. The six fundamental cases are 

highlighted, with the solutions of forth order linear and homogenous differential equations of 

vibrations represents the mode shapes functions and natural frequencies. To solve the differential 

equation, determined with the separations of variables method concludes in a Sturm-Lioville 

problem. A decrease of natural frequencies values can be observed, which corresponds to a 

decrease rigidity of compressed beams and the presents of elastic soil in compare to uncompressed 

ones. 

Rezumat 

 
Vibraţiile libere a barelor pe mediu elastic sunt studiate în prezenta lucrare. Barele se consideră ca 

un sistem dinamic cu masă continuuă, rezultând cazul sistemelor cu ∞ grade de libertate dinamice. 

Prezenţa efortului axial ne conduce la cazul vibraţiilor geometric-neliniare. Sunt studiate cele şase 

cazuri fundamentale, pentru care sunt determinate pulsaţiile proprii precum şi funcţiile proprii de 

vibraţie prin integrarea ecuaţiei diferenţiale de ordin IV, astfel suntem conduşi la expresia 

modurilor normale de vibraţie. Ecuaţia este omogenă şi liniară, iar soluţiile se determină prin 

aplicarea metodei separării variabilelor temporare de cele spaţiale, astfel suntem conduşi la o 

problemă mixtă de tip Sturm-Liouville. Prezenţa solicitărilor axiale şi a mediului elastic determină 

o diminuare a valorilor pulsaţiilor proprii fată de barele necomprimate. 

 

Keywords: geometrically nonlinear vibration, modal analysis, Euler-Bernoulli beam, axial force, 

Winkler foundation 

 

1. Introduction 

 

In this study, we investigate the dynamic response of elastic beam with axial load (geometrically 

non-linear vibration) on one parameter elastic linear foundation; also known as a Winkler 

foundation. Therefore, we take one-span Bernoulli-Euler beam loaded with dynamic loads - 

distributed forces and concentrate forces. Studies have been done, using the same hypotheses or, the 

more complex using Timoshenko theory of beams on elastic foundations, considering two different 

values of Winkler coefficients by Catal S. [1]. Numerical analysis of frequencies values for beams 

on elastic soil is also done by Oztuk and Coskun in [2].  
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2. Free vibrations. Normal modes shapes of vibrations 

 

 

 
Figure 1. Beam on elastic foundation 

 

The axial load    , flexural rigidity      and the mass density per unit length     of the beam are 

constants. The external load is        and       for concentrated forces applied in sections   . The 

Winkler constant is  . For the partial derivate equation, will consider a differential length element 

of beam, considering the external dynamic forces, internal forces and the reaction of foundation in 

length section   and      : 

 
Figure 2. Differential length element of beam 

 

In figure 2, V is the vertical shear force component T. This component, in nonlinear analysis it is 

tangent at a point x of middle deform fibre,         . 
Thus, we can write the equilibrium conditions. The second condition equilibrium is written respect 

to section    . 
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And further more 

{
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(3)  

 

Last relation, after first derivation respect to x: 

   

   
 

  

  
      

 

(4)  

 

In addition, based on relation (3), we can write  

   

   
      ̈          

 

(5)  

 

The differential equation that gives the elastic curve for the deflected beam is 

   
  

 
 
 

 
               (6)  

Further 

             ̈          (7)  

 

At last, the final expression 

                 ̈     (8)  

 

 If external loads are concentrated      , at sections    the Eq. (6) becomes 

                 ̈    ∑          

 

 (9)  

where         is the Dirac function. 

Comment: 

Starting from relation (3)  
  

  
   

         (10)  

 

and it reveals the influence of axial load     in the value of shear force     in non-linear calculus.  

The partial differential Eq. (7) describes the geometrically non-linear forced vibration of a beam on 

an elastic foundation. 

 

The partial derivate equation of free vibrations, due to initial conditions (displacements and 

velocities) without externals loads          and         is: 
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                   ̈    (11)  

Eq. (11) describes the normal modes shapes of geometrically nonlinear vibrations of o beam resting 

on elastic foundation. The natural frequencies functions are determined also. This two elements,    

and       determine the normal mode shape    . 

For the integration of Eq. (11), we will apply the variables separation technique. For that the 

solution of Eq. (11) will be written: 

                 (12)  

So further on the Eq. (11) becomes: 

                                 ̈      (13)  

divided by           : 
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    (14)  

In Eq. (14), the two fractions, of different variables, could not be equal only in the case that both 

fractions are constants. That constant is    also known as the natural frequency. 

Further, from Eq. (14) we can write the following:     

 ̈             (15)  

with the solution 

                  (16)  

and it concludes that the free dynamic response is harmonic and dependent of the frequency . 

The first equality of Eq. (14) is written:  

                         (17)  

where 

   
 

  
     

   

  
 (18)  

The natural frequencies functions          equation that results from Eq. (17) are dependent of 

boundary conditions. The differential equation and the boundary conditions is also known as a 

Sturm-Liouville problem. We will consider a free end beam at both ends: 

{
 
 

 
 
                        

        

                     

        

                     

 (19)  

Solving this problem will determine the normal mode shapes functions       , which are non-trivial 

solutions and satisfy the Eq. (19) conditions. Thus, the solution of Eq. (17) it is replace by his own 

solution. 
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3. The homogeneous solution of differential equation 

Eq. (17) is a linear equation, homogeneous, with constant coefficients, which has the particular 

solutions by the form of    . The characteristic equation is: 

             (20)  

with the solutions 

  
  

√         

 
   

  
   

√         

 
   

(21)  

Thus, the general solution of Eq. (17) is 

                                                   (22)  

 

and the constants A, B, C and D will be determined from the boundary conditions of the problem. 

 

4. Examples. The six fundamental cases.  

 

The homogeneous boundary conditions of Sturm-Liouville problem Eq. (19) involve the derivatives 

of general solution from Eq. (22): 
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4.1 Simply supported beam 

 

According to Eq. (19), the differential equation is replaced by his own solution. The boundary 

conditions results from displacements and bending moment null values Thus, the Sturm-Liouville 

problem is: 

{
 
 

 
 
                                                  

      

        

       

        

 (24)  

Thus, the system is: 
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 (25)  

It is a linear equation system, homogeneous. To avoid a trivial solution, at least one of the 

integrations constants must be different to zero, we must condition the determinant to be equal to 

zero. Therefore: 

http://hallo.ro/search.do?l=en&d=en&query=homogeneous
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Only that, the system Eq. (25) can be reduced to a two-equation system with two variables. The first 

two equations, with constants A, C can be separated taking notice that      , thus      . 

The last two relations from Eq. (25) can be written: 

{
                        

   
               

            
 (27)  

this system of homogeneous equations is with two unknown variables              and   
        . Taking notice that      , so we can write: 

                               (28)  

But             thus    , farther more for non trivial solution of Eq. (22),       , and the 

integration variable    , results: 

            (29)  

The Eq. (29) is also known as the frequency equation and   is an arbitrary constant. The mode 

shape functions are: 

               (30)  

From Eq. (29) results the natural frequencies values: 
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From Eq. (21), with the absolute value of |  
 |, results: 
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To obtain natural frequencies values   , also   
 , will proceed further: 
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As a result Eq. (18) can be written as follows, without any comments 
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thus, 
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Comments 

 in normal cases of elastic beams ( with no axial load      without resting on elastic 

foundation    ) 

  
  

  

 

    

  
 (37)  

 

  with axial load present 
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) (38)  

 

 the natural frequencies values for the beam with axial load       are smaller than 

frequencies of a beam without axial load. That occurs in reducing the rigidity of the beam, 

due the axial load. 

 the beam is resting on elastic foundation is more rigid, therefore the natural frequencies 

values are higher Eq. (36)  

 the axial load and the elastic foundation don`t modify the shape of mode functions       

(trigonometrically function sinus is still the prime function); only the rate value and ordinate 

are modify   

4.2 Free beam at both ends 

 

Boundary conditions for a free beam at the bought ends, considering that the bending moments and 

shear forces are zero          , are: 

{
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As a result, Eq. (23) can be written as follows, and we obtained a linear homogenous system of 

equations: 
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To avoid trivial solution, we must condition the determinant to be equal to zero. Therefore: 

|
      

      
|    (41)  

Where 
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which represents the frequencies equation of a beam with axial load, resting on elastic foundation, 

with free ends. 

Solving this determinant Eq. (41), it results: 

   
   

 [                 ]    
    

                    (42)  

And notating 
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Further, with the notation        ; the primary unknown variable and      
        

Thus, Eq. (42) becomes 
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(45)  

This equation is also known as the frequency equation in the z variable. The solutions of these 

equations are obtained for  explicit values of compression factor . Thus, it is obtained the 

solutions: 
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Mode shape functions of vibration and the constants of integration will be formulate according to 

only one constant of integration, assign with an arbitrary value. 

From Eq. (40) results 
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and further, from Eq. (40) and in the end: 
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The variables and constants from Eq. (40) have the index number “j”                 so we can 

concludeor, with the assign 
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4.3 Cantilevered beam 

 

Boundary conditions for a cantilevered beam, with the clamping at the left end, are: 

{
 

 
      

       

        

                    

 (55)  

So, from Eq. (19) and Eq. (20) 
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It is easy to show, from the first two equations, that 

{
    
       

    
  
  

  

 

and further 
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For nontrivial solution, we must condition the determinant to be equal to zero. Therefore: 
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The Eq. (62) represents the frequencies equation. Further more, evaluating the above determinant it 

results, with the notations 
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Solutions from Eq. (64)  
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The normal shapes of vibrations functions       to be determined, the constants of integration 
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           , dependent to each other, we must assign an arbitrary value to one of them     and 

the remain constants are easy to find. 

From Eq. (61) and Eq. (62): 
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Therefore, the final normal shapes form expression: 
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4.4 Double clamped beam 

 

Boundary conditions at the ends of beam         are: 
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The solutions are 

                  

                                  

the natural frequencies    values are determined with Eq. (66). 

For mode shapes functions, the integration constants are:  

     
 

 
  

  [                  ]

                      
       

     [                  ]

                            
        

   
     

     
  

     

     
     

where the final expression of normal shapes of vibration  
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4.5 Clamped – simply supported beam 

 

In this case, the boundary conditions are: 
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The solutions are 

                  

                                  

the natural frequencies    values are determined with Eq. (46), 
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and normal shapes of vibration 
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4.6 Free bearing- free at the other end 
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With the notation       
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5. Numerical analysis 
 

The frequencies values of first mode shape for the six fundamental cases of an beam resting on 

elastic foundation are determined, considering a rectangular beam of 25 cm width and 45 cm height, 

Poisson`s ratio 0.2, Young modulus 30 GPa and 6.00 m length. The numerical models were created 

using Abaqus [5] commercial soft, using 2D finite elements type B21. The external load was 

considered for three sets of external axial load. The compressions coefficient   has the value 0, 1 

and 2. When the beam is clamped on one end and free at the other only the first two values were 

analyzed. The results are showed in Table 1. 

 

 

 

 

              Table 1. Frequencies values 

Case   Frequencies 

(analytical mode) 

[s
-1

] 

Frequencies 

(Abaqus) 

[s
-1

] 

Differences 

[%] 

Simply supported 0 68.645 62.985 8.98 

1 67.370 62.680 7.48 

2 63.390 61.753 2.65 

Free at both ends 0 68.623 64.710 6.047 

1 57.533 64.660 11.022 

2 56.033 62.458 13.071 

Cantilever beam 0 64.721 66.527 2.714 

1 63.976 66.442 3.712 

Double clamped 

beam 

0 78.623 76.713 2.490 

1 72.622 76.442 4.997 

2 66.555 75.535 11.888 

Clamped-simply 

supported 

0 74.727 70.257 6.363 

1 73.523 69.936 5.129 

2 64.789 68.960 6.049 

Free bearing-free 

at the other end 

0 67.727 65.114 4.013 

1 62.846 65.007 3.325 

2 60.458 64.458 6.477 

 

 

6. Conclusions 
 

Free nongeometrical traverse vibrations are studied in the present paper. Normal shape modes of 

beams on elastic foundations, considering Winkler`s model. Considering six cases of a beam, 

resting on elastic foundations, the natural frequencies and normal mode shapes functions were 

determined. The values of natural frequencies decrees when the axial load is increasing due to the 

rigidity loss.  

 

Percentage differences are showed. Due to the complexity of mathematical equations, the maximum 

difference in the values determined using the proposed method and the numerical finite element 

method is 11.88%.  

 

Nonlinear geometrically vibrations problems of beams are difficult to analyze with existing 

commercial softs. 
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