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Abstract 

 

In this paper is studied the free vibrations of beams with axial load (nonlinear geometrical 

vibrations). The elastic beam is considered to have continuous mass. This problem can be included 

into ∞ dynamical degree of freedom systems. The mode shapes functions and natural frequencies 

are determined based on forth order linear and homogenous differential equation of vibrations Eq. 

(8). The solutions of that equation are determined by the separations of variables method Eq. (9), 

thus we are lead to a Sturm-Lioville problem. It is observed a decrease of natural frequencies 

values, which corresponds to a decrease rigidity of compressed beams, due to uncompressed ones. 

The six fundamental cases are highlighted. In every case the natural frequencies values and the 

modal shapes functions are determined, witch define the modal shapes of vibrations. 

 

Rezumat 

 

În lucrare se studiază vibraţiile libere ale grinzilor comprimate (vibraţii geometric neliniare). 

Grinda este considerată ca un sistem dinamic cu masă continuuă, astfel ne situăm în cazul 

sistemelor cu ∞ grade de libertate dinamice. Funcţiile formelor proprii de vibraţie precum şi 

pulsaţiile proprii sunt determinate integrând ecuaţia diferenţială de ordin IV, liniară şi omogenă 

(8). Soluţiile acestei ecuaţii se determină aplicând metoda separării variabilelor (9) fiind conduşi 

la o problem Sturm-Liouville. Se constată o diminuare a pulsaţiilor proprii, care corespunde cu o 

reducere a rigidităţii barelor comprimate, în raport cu cele necomprimate. Sunt prezentate cele 

şase cazuri fundamentale. Pentru fiecare caz sunt prezentate pulsaţiile proprii precum şi funcţiile 

formelor proprii de vibraţie , care definesc modurile normale de vibraţie. 

 

Keywords: partial differential equation, geometrically nonlinear vibration, compression factor, 
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1. Introduction 

 

Beams vibrations subject with axial load represents a special part of the large engineering domain. 

Structures that are representative to this field are tall building, communications towers or above 

ground water towers. Those structures are loaded, beside the axial load from the gravity field, with 

cross forces due to wind load or earthquake. The traverse vibrations occur in these conditions. 

Several researchers have dedicated time to free vibrating beam with axial load present. During 

period of 1960-1980 the studies have been concentrated to the analytical solutions of the 

mathematical problems. After the 80`, finite elements method has a large development, and the 

analytical solution is almost abandoned. Remarkable results in case of a vertical Rayleigh cantilever 

beam are in [1] where natural frequencies and mode shapes are studied. Considering shear 

deformation theory, Thuc [2] has determined the mode shapes with for axial load values up cu 0.5 

of critical load. A relevant book with a large approach of vibrating axial loaded structures had been 

done by Virgin [3].    

In this study, we investigate the dynamic response of elastic beam with axial load (geometrically 

non-linear vibration). Therefore, we take one-span Bernoulli-Euler beam loaded with dynamic 

loads - distributed forces and concentrate forces. 

 

Figure 1. One spam beam loaded with external forces 

 

The axial load    , flexural rigidity      and the mass density per unit length     of the beam are 

constants. For the partial derivate equation, will consider a differential element of beam, 

considering the external dynamic forces and internal forces [4]: 

 

Figure 2. Differential length element of beam 
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In figure 2, V is the vertical shear force component T. This component, in nonlinear analysis it is 

tangent at a point x of medium fibre,         . 

Thus, we can write 

{
 
 

 
 ∑    

∑    

∑    

  

{
 
 

 
 
     

             ̈    

                  
  

 
   ̈  

  

 
  

 (1)  

The differential equation that gives the elastic curve for the deflected beam is 

   
  

 
  
 

 
                

Further 

             ̈        

At last, the final expression 

              ̈     (2)  

If external loads are concentrated      , at sections    the Eq. (6) becomes 

              ̈    ∑          

 

 (3)  

where         is the Dirac function. 

Comment: 

Starting from Eq. (2)  

  

  
    

         (4)  

and it reveal the influence of axial load     in the value of shear force     in non-linear calculus.  

The partial differential Eq. (7) describes the geometrically non-linear vibration of a beam. 

 

2. Free vibrations. Normal modes shapes of vibrations 

 

The partial derivate equation of free vibrations, due to initial conditions (displacements and 

velocities) without externals loads is [5]: 

                ̈    (5)  

For the integration of Eq. (8), we will apply the variables separation technique. Thus, the normal 
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modes shapes of vibrations and the natural frequencies functions should be determined. For that the 

solution of Eq. (8) will be written: 

                 (6)  

So further on the Eq. (8) becomes: 

                                       ̈      (7)  

divided by           : 

  

 
 
      

    
 

 

 
 
      

    
  

  ̈    

    
    (8)  

In Eq. (11), the two fractions, of different variables, could not be equal only in the case that both 

fractions are constants. That constant is    also known as the natural frequency. 

Further, from Eq. (8) we can write the following:     

 ̈             (9)  

with the solution 

                  (10)  

and it concludes that the free dynamic response is harmonic and dependent of the frequency . 

The first equality of Eq. (11) is written:  

                         (11)  

where 

   
 

  
     

   

  
 (12)  

The natural frequencies functions          equation that results from Eq. (11) is dependent of 

boundary conditions. The differential equation and the boundary conditions are also known as a 

Sturm-Liouville problem. 

{
                        

   
                                 

 (13)  

Solving this problem will determine the natural frequencies functions, which are non-zeros 

solutions. Thus, the solution of Eq. (13) it is replace by his own solution. 

 

3. The homogeneous solution of differential equation 

 

Eq. (13) is a linear equation, homogeneous, with constant coefficients, which has the particular 

solutions by the form of    . So, we can write: 

http://hallo.ro/search.do?l=en&d=en&query=homogeneous
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       (14)  

with the solutions 

  
  

√         

 
   

  
   

√         

 
   

(15)  

Thus, the general solution of Eq. (17) is 

                                                   (16)  

and the constants A, B, C and D will be determined from the boundary conditions of the problem. 

 

 

4.Examples. The six fundamental cases.  
 

The homogeneous boundary conditions of Sturm-Liouville problem - Eq. (16) – involve the 

derivatives of general solution – Eq. (16) [6]: 

                                                           

          
               

               
              

          

           
               

               
              

          

 (17)  

The six fundamental cases in our study are: 

- simply supported beam 

- free beam at both ends 

- cantilevered beam  

- double clamped beam 

- clamped – simply supported 

- free bearing - free at the other end 

4.1 Simply supported beam 

 

According to Eq. (16), the differential equation is replaced by his own solution – Eq. (19). Thus, the 

Sturm-Liouville problem is: 

{
 
 

 
 
                                                  

      

        

       

        

 (18)  

Thus, the system is: 
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{

     
   

     
   

                                               

   
               

               
              

            

 (19)  

It is a linear equation system, homogeneous. To avoid the zero solution, we must condition the 

determinant to be equal to zero. Therefore: 

|

    
  
     

  
                                      

  
             

              
              

          

|    (20)  

Only that, the system Eq. (22) can be reduced to a two-equation system with two variables. The first 

two equations of Eq. (22) can be separated and there determinant is: 

|
  
  
    

 |      
    

     (21)  

Thus,        

So, further Eq. (22) can be written: 

{
                        

   
               

            
 (22)  

this system of homogeneous equations is with two variables              and           . The 

determinant of this equations system is the same, as Eq. (24), not equal to zero, it results: 

                            (23)  

Only that,  

             

thus    , farther more the       , thus    . Therefore, we can write: 

           (24)  

The Eq. (27) is also known as the frequency equation and   is an arbitrary constant. The mode 

shape functions are: 

               (25)  

From Eq. (27) results the natural frequencies values: 

                 (26)  

   
  

 
    

  
    

  
 (27)  

From Eq. (18), with the absolute value of |  
 |, results: 
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√         

 
 

    

  
  

To obtain natural frequencies values   , also   
 , will proceed further: 

  
  

    

  
(  

    

    
)  

As a result Eq. (15) can be written as follows, without any comments 

  
  

  

 
[
    

  
(  

    

    
)] (28)  

or 

  
  

  

 

    

  
(  

  

    
)  

   
    

  
√
  

 
(  

  

    
) (29)  

where  is the compression factor. 

If the exterior forces have no axial load      , natural frequencies values    are: 

   
    

  
√
  

 
  (30)  

Comment 

The frequencies of a beam with axial load are smaller than frequencies of a beam without axial 

load. That occurs in reducing the rigidity of the beam, due the axial load. This observation remain 

the same for all others cases of boundary conditions. 

Due to this reduction of rigidity, the pulsations values decrease to value 0, where the factor of 

compression has the value of critical load. 

The shape functions are showed in the next figure. 

 
  

Figure 3. Normal mode shapes of simply supported beam 
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4.2 Free beam at both ends 

 

Boundary conditions for a free beam at the bought ends, considering that the bending moments and 

shear forces are zero          , are: 

{
 

 
        

                     

        

                     

 (31)  

Where N is the axial load. As a result, Eq. (20) can be written as follows 

{
 
 

 
 
   

     
   

   
     

               

   
             

             
              

            

   
             

             
              

           

   [                                                 ]   

 (32)  

taking account of Eq. (32) 

|
      

      
|    (33)  

and the coefficients are: 

      
  [                 ]

       [             
  
    

     
         ]

       [   
             

  
  

   
              ]

         
     [                ] 

 

Solving this determinant, it results the frequencies equation: 

   
   

 [                 ]    
    

                    (34)  

Further, with the notation        ; the primary unknown variable and      
        

Thus, Eq. (34) becomes 

 (√     )
 

    [    (√     )       ]   

 [   (√     )
 

]   (√     )          

(35)  

This equation is also known as the frequency equation in the z variable. The solutions of these 

equations are obtained for explicit values of compression factor . Thus, it is obtained the solutions: 
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The natural frequencies value,     can be determined from the above solutions. At this we associate 

the shape mode function        

The couple (        ) defines a normal mode shape of vibration. Thus, to determinate of a normal 

mode shape, we start from second expression from Eq. (39). In other cases of boundary conditions, 

the steps are the same. 

where the notation was use 

   
     [                  ]

                            
 (36)  

The variables and constants from above have the index number “j”, so we can conclude: 

                 
 

 
              

 

 
 (

   

   
)
 

 

          
 

 
 (

   

   
)
 

 

            
 

 
 (37)  

The shape functions at     and        for the first three mode shapes are showed in the next 

figure. 

   

   

Figure 4. Normal mode shapes of free beam at both ends 

 

4.3 Cantilevered beam  

 

Boundary conditions for a cantilevered beam, with the clamping at the left end, are: 

{
 

 
      

       

        

                    

 (38)  

So, from Eq. (19) and Eq. (20) 

            

      
   

        
   

        
   

  

http://hallo.ro/search.do?l=ro&d=en&query=associate
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(39)  

It is easy to show, from the first two equations, that 

{
    
       

    
  
  

  

and further 

{
 [  
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(40)  

For nontrivial solution, we must condition the determinant to be equal to zero. Therefore: 

|
      

      
|    (41)  

And 
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Further more 
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The argument of     from Eq. (19) results from expression   
  |  

 | in the second expression of 

Eq. (18), thus 
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 (42)  
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That determines 

  
    

  √          
    

         
   

               

  
    

     
   

         (43)  

  
    

                 
    

         

we obtain, and multiply it with    

     
       

       [     
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 [      
      

       [     
       

 ]]                  

           [     
       

        ]                   

with the notations: 

                      
        

the frequencies equation becomes 

               [             ]  (√     )         

     √       (√     )          

(44)  

Solutions from Eq. (55)  

                  

                                  

from this solution, the natural frequencies    values are determined with Eq. (46) 

   
  
 

  
√
  

 
(  

  

  
 )  

The integration constants will be evaluated from only one. They are dependent to each other, so we 

can assign an arbitrary value to one of them    . So the normal shapes of vibrations functions 

can be determined. 
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Therefore, the final normal shapes form expression: 
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 (46)  

The shape functions at     and        for the first three mode shapes are showed in the next 

figure. 

   

   

Figure 5. Normal mode shapes of cantilevered beam 

 

4.4 Double clamped beam 

 

Boundary conditions at the ends of beam         are: 

{
 

 
      

       

      

       

 (47)  

the frequencies equation becomes 

[      (√     )       ]  
  

  √     
    (√     )          (48)  

And with notation 

   
     [                  ]

                            
         

where the final expression of normal shapes of vibration is 
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 (49)  

The shape functions at     and        for the first three mode shapes are showed in the next 

figure. 
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Figure 6. Normal mode shapes of double clamped beam 

 

4.5 Clamped – simply supported beam 

 

In this case, the boundary conditions are: 

 

{
 

 
      

       

      

        

  (50)  

With the frequencies equation: 

√                              

the natural frequencies    values are determined with Eq. (46) and normal shapes of vibration 
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 (51)  

The shape functions at     and        for the first three mode shapes are showed in the next 

figure. 
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Figure 7. Normal mode shapes of clamped – simply supported beam 

 

4.6 Free bearing- free at the other end 
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 (52)  

and N is the axial load. 
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so, the equations system can be rewrite as: 
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(53)  

the determinant is: 
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with the notations        , and      
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with the solutions 
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The normal shades functions 
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and the value of kj is 
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In the end, the normal shapes functions are 
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(56)  

The shape functions at     and        for the first three mode shapes are showed in the next 

figure. 

   

   

Figure 8. Normal mode shapes of free bearing- free at the other end 
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