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Abstract 
 

Many theses have been published on the now much-discussed phenomenon of lateral-torsional (LT) 

buckling of beams with the aim of solving the problems of design formulae given by the EN 1993-1-

1. In this paper a novel Ayrton-Perry formula based method is introduced for the calculation of LT 

buckling resistance of beams. According that, the finite element model is detailed which was used 

for the numerical tests needed to produce the calibration database. For the proper modeling, the 

consequence of different types of geometrical and material imperfection is examined. The 

calibration method of the formula is described in this paper for the case of simple beams and a 

novel method is proposed for the calculation of the LT buckling resistance. The generalization of 

the novel method is examined for beams with prevented end-warp, loaded by constant moment 

distribution and beams loaded by triangular moment distribution. Samples are presented for the 

examined cases. 

 
 

Keywords: LT buckling, Ayrton-Perry formula, calibration and generalization, imperfection, 

prevented end-warp, triangular moment-distribution 

 

 

1. Research work on the novel Ayrton-Perry formula 
 

During the analysis of steel structures the determination of the stability resistance is one of the most 

significant verification since usually the loss of stability is the governing problem. For these 

complex mechanical behaviors the Eurocode standards endeavor to give simplified methods to 

make the design process easier. One of the most important simplifications is the principle of 

member isolation whose widespread application is the effective length method [3]. This method 

specifies the boundary conditions of a single member through the definition of an effective length 

which is used to evaluate simple stability equations on a virtual equivalent member. The drawback 

of this method arises from that the number of possible structural configurations is unlimited, 

however standard equations can be provided only for specific cases. Therefore, despite the 

complexity of the interaction factors presented in Eurocode 3, the range of application is very 

limited [4]. 

 

An appropriate solution for the above problem is the Global type Design Approach (GDA) which 

uses one single model for both the mechanical analysis and for stability design. Through GDA the 
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same structural model is evaluated using a Global Model based Buckling Analysis (GMBA) instead 

of doing calculations on a virtual equivalent member, which gives realistic results for the stability 

problems of the structure. Therefore, the GDA reveals a deeper insight into the structural behavior 

of the model. Unfortunately, design rules to support the results of the GMBA are not properly 

developed yet, hence the advantages of the GDA cannot be utilized by the practising engineers. 

Eurocode 3 allows applying the principles of GDA through the Overall Imperfection Method or the 

General Stability Method, but the guidance is not comprehensive and includes several restrictions 

making the application difficult. 

 

Recognizing the demand for a complete, entirely derived and comprehensively verified design 

method, a new research work started according to the GDA. The aim of the work is the 

development of a novel stability design process based on the generalized Ayrton-Perry formula. 

The derivation of the equations of the formula is introduced in [1] for the case of the LT buckling of 

simple, prismatic beams with I-shaped sections, end-fork, free to warp boundary conditions, 

subjected to pure bending (hereinafter basic model). As the first step of the research it was 

examined that the formulae determined in [1] how can be calibrated and a beneficial, novel method 

with the calibrated formulae can be proposed or not. For the results of an initial, representative test 

program it was proved that the Ayrton-Perry formula is appropriate and has many advantages for 

the case of simple beams [2]. In further work the calibration process of the formula was carried out 

for an extended test program and a novel method was proposed for the stability design of the basic 

model [5]. 

 

In this paper the novel, calibrated Ayrton-Perry formula based method for LT buckling of simple 

beams is presented and the generalization is examined. The subjects of the examination are the 

beams with boundary conditions different from the basic model (namely end-fork with prevented 

end-warp) and the beams with triangular moment distribution. In the paper the proposed method is 

detailed for the three examined cases through examples. 

 

 

2. Finite element model for numerical tests 
 

For the examinations and the calibration GMNI calculations of tested members were carried out to 

determine the needed LT buckling resistances. The numerical simulations of beams with different 

load distributions and boundary conditions were carried out by shell finite element models, in 

ANSYS software. The steel members were modeled with simplified cross-sections shown in Fig. 1-

a, which were equivalent with the hot-rolled I-sections chosen for the tests. The geometry of the 

cross-sections and the length of the members were given by input parameters for the model 

creation. At the ends of the beams specific models of supports were defined, where every nodes of 

each cross-sections were connected to a master node, see in Fig. 1-a. With this construction the 

boundary conditions of warp and different types of supports could be specified on one node, and at 

the same time the numerical errors arising from the concentrated conditions could be avoided. The 

force and moment type loads of beams were defined in form of stress on the lines of end-sections. 

Material and geometrical imperfections were modeled on members, which will be detailed later. 

 

The models were constructed with 4-node, SHELL181 type finite strain shell elements, which can 

model the nonlinear behavior. Examinations were performed to determine the effect of changing the 

size of longitudinal and transverse finite element mesh on the result of numerical simulations. 

Based on the findings of the tests, division into 100 parts was chosen along the members to get 

properly accurate numerical simulations with optimal computational time. However these aspects 

did not justify, the accurate modeling of residual stresses needed small size finite element mesh in 

transverse direction. Therefore, along the half of flanges and also the web division into 6 parts was 

chosen, shown in Fig. 1-a. The material behavior of the beams was modeled with linear elastic-
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ideally plastic material model with E = 210GPa Young-modulus and yield criterion belonging to 

the standard yield strength of the material grade. 

 

    
 

Figure 1. a- FEM model of beams; b - M-v curves of HEB300 with different residual stress models 

 
To model the residual stresses of the members, mainly two types of distribution can be found in use 

at the international research works. These are the triangular distribution on the flanges and also the 

web (e. g. in [7]) and the parabolic distribution (e. g. in [8]). Boissonnade et al. carried out 

numerical simulations to examine the differences between the LT buckling resistances of beams 

with different residual stress distributions for the case of end-fork boundary conditions [8]. 

Similarly to this research, we carried out numerical simulations on beams with prevented end-warp 

conditions to prove the validity of previous findings in [8]. The Fig. 1-b shows examples for the test 

results. On the diagram the bending moment is plotted over the lateral displacement of the midpoint 

of upper flange, hereinafter the M-v curves of beams with HEB300 profile, 8500mm member 

length and S355 material grade are shown. In Fig. 1-b the solid line belongs to the results of 

member with triangular distribution, long-dashed line to the parabolic used in [8], and short-dashed 

line to the parabolic determined in [6]. Based on the results it can be stated that the differences 

between the behavior of beams with different residual stress distributions are negligible. The largest 

difference between the ultimate bearing capacities of beams presented as examples in Fig. 1-b was 

less than 2%. In further numerical tests the parabolic residual stress distribution determined in [6] 

was used with amplitude depending on the geometry of the cross-section: if the height/width (h/b) 

ratio of the profile is over 1,2 the maximum value of residual stress at the top of flanges is equal to 

the 30% of the yield strength (0,3∙fy), otherwise (h/b ≤ 1,2) it is 0,5∙fy. 

 

In the international publications many of different types of geometric imperfections can be found 

for the modeling of the initial geometry of members. Based on the results of sensitivity analysis it 

can be stated that one of the most important factors is the geometric imperfection in terms of LT 

buckling resistance [9]. Therefore, it is an important question that the geometric imperfections with 

different types and values how can change the carrying capacity of beams. Boissonnade et al. 

examined this effect in [8], where the LT buckling resistances of beams with end-fork boundary 

conditions were determined and compared belonging to different initial geometries. We performed 

tests with similar aim for the case of beams with end-fork boundary conditions and with prevented 

end-warp. In course of the examination the M-v curves of members given as results of numerical 

simulations were compared belonging to different initial geometric imperfections, shown on the 

diagrams in Fig. 2. In Fig. 2-a the M-v curves of the member with HEB300 profile, 8500mm length 

and S355 material grade can be seen. On the diagram the lines belong to lateral bow imperfection, 

initial geometry affine to the first eigenmode and two modified first eigenmode with the changing 

of the ratio between the lateral displacement and rotation (hereinafter v0/φ0), as shown in Fig. 2-a. 

In all of these cases the total initial lateral displacement of the midpoint of upper flange was 

specified in value L/1000, where L is the length of the member. With the same test member we 
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carried out numerical simulations to examine the effect of changing the amplitude of the 

imperfection on the LT buckling resistance, for the case of initial geometry affine to the first 

eigenmode. The M-v curves belonging to this examination are shown in Fig. 2-b. 

 

 
 

Figure 2. M-v curves of HEB300 with different a- types and b - amplitudes of imperfection 

 

The results of the performed tests show that the LT buckling resistance of the beam with HEB300 

(and with also examined IPE500) profile is more sensitive to the rotation type initial imperfection. 

It can be seen that the decrease of the v0/φ0 ratio of initial geometry induces the decrease of load 

carrying capacity of the member. Belonging to the different initial geometric imperfections the 

difference between the maximum values of the bending moment carried by the members is 

negligible, less than 2,5%. Based on our and international results of numerical tests it can be stated 

that the type of the geometric imperfection, the initial geometry of the beams has not significant 

effect on the LT buckling resistance. However, the increasing of the amplitude of imperfection from 

the value L/2000 to L/200 causes substantial, approximately 13% decrease in the carrying capacity, 

see in Fig. 2-b. In further numerical tests the initial geometry of the members was defined as affine 

to the first eigenmode depending on the boundary conditions with the amplitude equal to L/1000, in 

accordance with the international practice. 

 

With the steel members chosen for the tests geometrical and material non-linear, imperfect (GMNI) 

analysis were carried out. The behavior and accuracy of the model was verified by the published 

results of numerical simulations of international research works in [4, 5, 8]. In these papers the 

authors published LT buckling curves belonging to different profiles, which were compared to the 

results of our finite element model. Our models of members used for the tests were constructed with 

the same geometric, material imperfections and material models as these were defined in the 

international publications. Own and published experimental results were in well approximation, the 

differences were acceptable.  

 

 

3. Novel method for the LT buckling of simple beams 
 

3.1 Ayrton-Perry formula for the theoretical basis of the novel method 

 

As it was mentioned, the Ayrton-Perry formula provides the basic of the novel method, which was 

generalized for the case of simple beams. In [1] it was proved that most important stage of the 

generalization is the properly chosen shape for the initial geometric imperfection. Accordingly, if 

the first buckling mode is applied for the initial geometry, the generalization of the Ayrton-Perry 

formula becomes possible - [1]. For the case of the basic model the first buckling mode can be 

described by the following condition for the imperfection components: 
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where v0 and φ0 are the amplitudes of lateral and torsional imperfections with half-sine wave shape, 

Mcr is the elastic critical bending moment of the member and Ncr is the elastic critical buckling load 

about the minor axis. 

 

After having the condition for the initial geometry the first yield criterion can be constructed in 

terms of the second order internal forces at midspan. Introducing the standard notations for the 

slenderness  cryyLT MfW /  and reduction factor for LT buckling  )/( yyyLT fWM  , the 

standard quadratic form of the Ayrton-Perry formula can be obtained [1]: 
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where the generalized imperfection factor has the following form: 
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In the equations Wy , Wz and Wω are the elastic major axis, minor axis and warping sectional 

modules of the cross-section respectively, fy is the yield strength, My is the uniform major axis 

bending moment, G is the shear modulus of the material and It is the St. Venant torsional constant. 

 

It is relevant to state that these derived, theoretical formulae are not appropriate for practical design 

methods. The formulae define the load-carrying capacity equal to the first yield of the member and 

do not take into account several effects, e.g. the plastic behavior of the member and the effect of 

residual stresses. Therefore, a comprehensive work on deterministic and probabilistic calibration is 

needed to propose an appropriate design method based on the generalized Ayrton-Perry formula. 

 

3.2 Novel, Ayrton-Perry based method for the basic model 

 

For the examination of the utility and efficiency of the generalized Ayrton-Perry formula, a 

deterministic calibration process was executed for the basic model. The aim of that calibration was 

to evaluate the applicability of the Ayrton-Perry based formulae. For this evaluation we developed a 

novel method with calibration for the basic model, and then we examined the possibility of the 

generalization of this novel method for other boundary condition and other load distribution cases. 

 

To create the buckling database needed to the calibration, an extended numerical test program was 

carried out, using the finite element model detailed in Section 2, in software ANSYS. For the 

simulations 100 different members were chosen, which meant 20 different (IPE type, 200, 300, 500, 

600 marked, and HEA, HEAA, HEB, HEM types with 300, 450, 600 and 900 mark) profiles and 5 

different member lengths for each profiles. The length (L) of the beams were determined according 

to specified, λz = 0,6; 0,9; 1,2; 1,5 and 2,0 values of slenderness belonging to the buckling about the 

weak axis. The material grade of the members was S235, with yield strength 235 N/mm
2
. With the 

model of the members geometrical and material nonlinear imperfect (GMNI) analysis was carried 

out. 

 

As the result of the numerical simulations the LT buckling resistance (Mb,Rd) of the beams was 

determined which were used to produce the extended database for the members with end-fork 

boundary conditions subjected to pure bending. From the determined resistances the values of the 

reduction factor for LT buckling (χLT) were calculated by Eq. 4: 

 

Rdc

Rdb

LT
M

M

,

,
  (4) 



Bettina Badari, Ferenc Papp / Acta Technica Napocensis: Civil Engineering & Architecture Vol. 56 No 2 (2013) 27-42 

 

32 

 

where Mc,Rd is the bending resistance belonging to the cross-sectional carrying capacity. From the 

χLT values using Eq. 5, the formulae of LT buckling curves determined in [1]: 

 
22

1

LTLTLT

LT





  where  215,0 LTLTLT    (5) 

the values of the generalized imperfection factor (ηLT) were calculated. Using the generalized form 

of ηLT, see in Eq. 3 and the specification for the v0/φ0 ratio, see in Eq. 1, the values of the amplitude 

of initial, sinusoidal imperfection components were determined. It is important to note, that through 

the calculations the values of sectional modules of the cross-section were determined belonging to 

the plastic behavior.  

 

The calculated values of the amplitude of geometrical imperfection were classified based on the 

cross-section of the members into two groups: group1 means the profiles with h/b ratio over 1,5 and 

group2 means the other (h/b ≤ 1,5) profiles. For the basic of the calibration the “member 

length/total lateral displacement” of the midpoint of upper flange (hereinafter: L/v) ratios were 

chosen. These L/v values were calculated from the results of numerical simulations which are 

shown on the diagrams in Fig. 3 belonging to the cross-section groups. 

 

 
 

Figure 3. L/v ratios of beams with profiles with height/width ratio a - over 1,5 and b - not over 1,5 

 
On the results shown in Fig. 3 bottom covering curves were fitted belonging to each group. 

According to the curves, the proposed expression for the calculation of the calibrated, total lateral 

displacement (vcal) of the midpoint of the upper flange is shown in Eq. 6 for the case of profiles with 

h/b ratio over 1,5 and in Eq. 7 for the case of profiles with h/b ≤ 1,5: 

 

If h/b > 1,5 













9,0350

9,0350)9,0(0001 2

LT

LTLT

cal if

if

v

L




 (6) 
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Using the formulae proposed for the calculation of the total lateral displacement of the midpoint of 

upper flange and the equations determined in [1], shown by Eq. 2-5 the calibrated value of the LT 

buckling resistance of different beams can be calculated. We compared the values of reduction 

factor for LT buckling determined by numerical simulations and calculated with the calibrated 

formulae. We stated that the differences what can be found to exist between the two types of results 

are fairly small and are always on the safe side. Therefore, we have a method for the determination 

of the bending moment carrying capacity of beams with end-fork boundary conditions which is 

sufficiently accurate and safe. 
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3.3 Example: Ayrton-Perry based method for a member belonging to the basic model (bm) 

 

The task is the determination of the LT buckling resistance of a sample member with end-fork 

boundary conditions, loaded by uniform bending. The properties of the cross-section, the member 

length and the material are given. The resistance has to be determined with numerical simulation, 

the novel Ayrton-Perry based method and standard method given by the Eurocode, and then these 

results have to be compared. 

 

 

GIVEN PROFILE PROPERTIES CALCULATED PROFILE PROPERTIES MATERIAL PROPERTIES 

Profile: IPE500    Material grade: S235 

- height of the profile: h = 500mm A = 113,368cm2 i = 4,342cm  λ1 = 93,9 

- width of the profile: b = 200mm Iz = 2137,614cm4 Wpl,y = 2146,153cm3 - yield strength: fy = 235N/mm2 

- thickness of the web: tw = 10,2mm Iω = 1251871,993cm6 Wpl,z = 332,589cm3 - Young modulus: E = 210000N/mm2 

- thickness of the flange: tf = 16mm It = 71,734cm4 Wpl,ω = 8048,65cm4 - shear modulus: G = 80770N/mm2 

MEMBER PROPERTIES      

Slenderness: λz = 1,6  Member length: L = λz · λ1· i = 652,386cm 

 

 

NUMERICAL SIMULATION IN ANSYS 

 

For the numerical simulation the shell finite element model of the given member was defined, and 

GMNI analysis was carried out. As the result of the test the bending resistance of the member was 

determined. 
 Load carrying capacity of the member: kNmM ANSYSRdb 157,255,,   

 

THE AYRTON-PERRY FORMULA BASED METHOD 

 

Using the Ayrton-Perry based formulae determined in [1] and the calibrated equations in Section 

3.2, the LT buckling resistance of the member can be calculated. First step is the determination of 

the slenderness for LT buckling: 

 Elastic critical normal force: kN
L
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N z
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2
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 Elastic critical bending moment: kNm
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 Cross-sectional bending resistance: kNmfWM yyplRkc 346,504,, 

 
 Slenderness for LT buckling: 

bmcr

Rkc

LT
M

M

,

,
  197,1LT

 

The h/b ratio of the IPE500 profile is 2,5 therefore, based on the appropriate calibrated equation 

(Eq.6) the value of the total lateral displacement of the midpoint of upper flange can be calculated: 

 Calibrated equation: 
  

9,0350

9,03509,01000
2
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From these values, using the condition for the initial shape (Eq.1), the amplitudes of the 

imperfection components and also the generalized imperfection factor (Eq.3) can be determined: 
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Applying the formulae of the LT buckling curves determined in [1] (Eq.5) the reduction factor for 

LT buckling and the LT buckling resistance of the member can be calculated: 

   395,115,0 2
,,  LTbmLTbmLT   474,0
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 LT buckling resistance: 
1

,,,,
M

y

yplbmLTAPRdb

f
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
   kNmM APRdb 022,239,, 

 
 

THE EUROCODE METHODS 

 

The LT buckling resistance of the member according to the EN 1993-1-1, section 6.3.2.2. Lateral 

torsional buckling curves - General case: 

 imperfection factor curve 'b': 34,0LT  recommended value for curves: 2,00, LT  

    386,115,0 2
0,  LTLTLTLTLT   48,0
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 LT buckling resistance: 
1
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y
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f
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
   kNmM ECRdb 878,241,,   

 

The LT buckling resistance of the member according to the EN 1993-1-1, section 6.3.2.3. Lateral 

torsional buckling curves for rolled sections or equivalent welded sections: 

 imperfection factor curve 'c': 49,0LT  recommended values for curves: 4,00, LT  75,0  

    233,115,0 2
0,  LTLTLTLTLT   526,0
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1
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
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COMPARISON OF THE RESULTS 

 

For the evaluation of the novel method the LTB resistance of the tested member was determined by 

the EN1993-1-1 methods too. The results of the Eurocode and the novel, Ayrton-Perry formula 

based method are compared with the results of the numerical simulation. The results are 

summarized in Table 1. 

 
Table 1: Comparison of LTB resistances of the basic model sample 

Determination method LTB resistance (kNm) 
Difference on safe 

side (%) 

ANSYS simulation 255,157 (basic) 

APF based method 239,022 6,750 

EC - 6.3.2.2 241,878 5,490 

EC - 6.3.2.3 265,286 -3,818 
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4. Generalization of the novel method for beams with prevented end-warp 
 

4.1 Generalization based on the theory of elastic extrapolation 

 

In Section 3.3 it was demonstrated how the novel, Ayrton-Perry formula based method works for 

the basic model. Hereinafter, it is examined how can be this novel method generalized for the case 

of members with end-fork but end-warp preventing boundary conditions, loaded by uniform 

bending. The basic idea of the generalization was the theory of elastic extrapolation. The theory 

says that if the buckling behavior belonging to the ideal models of two steel members is similar, the 

real carrying capacity of the two members is related. In terms of the method this means that first the 

slenderness of the examined, end-warp prevented member has to be determined. Then, with this 

slenderness an equivalent, basic model member has to be defined which the demonstrated method 

has to be carried out with. According to the theory of the elastic extrapolation the LT buckling 

resistance, calculated for this equivalent member has to be a good approximation for the originally 

examined member with prevented end-warp. 

 

4.2 Example: Ayrton-Perry based method for an end-warp prevented member 

 

The task is the determination of the LT buckling resistance of a sample member with end-fork but 

end-warp preventing boundary conditions, loaded by uniform bending. The properties of the cross-

section, the member length and the material are the same as given in Section 3.3. The resistance has 

to be determined with numerical simulation, the novel Ayrton-Perry based method and standard 

method given by the Eurocode, and then these results have to be compared. 

 

NUMERICAL SIMULATION IN ANSYS 

 

For the numerical simulation the shell finite element model of the given member was defined, and 

GMNI analysis was carried out. As the result of the test the bending resistance of the member was 

determined. 
 Load carrying capacity of the member: kNmM ANSYSRdb 292,347,,   

 

THE AYRTON-PERRY FORMULA BASED METHOD 

 

Using the Ayrton-Perry based formulae determined in [1] and the calibrated equations in Section 

3.2, the LT buckling resistance of the member can be calculated. First step is the determination of 

the slenderness for LT buckling: 
 Boundary conditions: - prevention for end rotation: 85,0k  

  - prevention for end-warping: 5,0wk

 

 Elastic critical bending moment: 
 

 
kNm

IE

IGLk

I

I

k

k

Lk

IE
M

z

t

zw

z
bmcr 409,659

2

22

2

2

, 


























 

 
 Cross-sectional bending resistance: kNmfWM yyplRkc 346,504,, 

 

 Slenderness for LT buckling: 
bmcr

Rkc

LT
M

M

,

,
  875,0LT

 

According to the theory of elastic extrapolation the equivalent, basic model member has to be 

defined. The member length of the equivalent beam: 

 Elastic critical bending moment for the basic model: kNm
M

M

LT

Rdc

bmcr 409,659
2

,

, 

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 Equivalent member length: cm
I

I

M

IG

M

IE

M

IGIE
L

zbmcr

t

bmcr

z

bmcr

tz
bm 329,44145,0

2
,
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2
,

224

2
,

2









































 

 

 Elastic critical normal force: kN
L

IE
N

bm

z
bmcr 699,2274

2

2

, 





 

The h/b ratio of the IPE500 profile is 2,5 therefore, based on the appropriate calibrated equation 

(Eq.6) the value of the total lateral displacement of the midpoint of upper flange can be calculated: 

 Calibrated equation: 
  

9,0350

9,03509,01000
2






LT

LTLT

cal if

if

v

L




 

 Total lateral displacement of the upper flange: 
 

mm
L

v

LT

cal 586,12
3509,01000

2






 

From these values, using the condition for the initial shape (Eq.1), the amplitudes of the 

imperfection components and also the generalized imperfection factor (Eq.3) can be determined:  

 displacement: mm
th

M

N

v
v

f

bmcr

bmcr

cal
cal 86,6

2
1

,

,
,0 




  rotation: 024,0
,

,

,0 
bmcr

bmcr

calcal
M

N
v  

 Generalized imperfection factor: 28,0
,

,

,
,0

,

,

,0
,

,

,0, 






pl

ypl

bmcr

t
cal

zpl

ypl

cal
pl

ypl

calbmLT
W

W

M

IG

W

W

W

W
v  

Applying the formulae of the LT buckling curves determined in [1] (Eq.5) the reduction factor for 

LT buckling and the LT buckling resistance of the member can be calculated: 

   023,115,0 2
,,  LTbmLTbmLT   644,0

1

22
,,

, 





LTbmLTbmLT

bmLT


  

 LT buckling resistance: 
1

,,,,
M

y

yplbmLTAPRdb

f
WM


   kNmM APRdb 905,324,, 

 
 

THE EUROCODE METHODS 

 

The LT buckling resistance of the member according to the EN 1993-1-1, section 6.3.2.2. Lateral 

torsional buckling curves - General case: 

 imperfection factor curve 'b': 34,0LT  recommended value for curves: 2,00, LT  

    997,015,0 2
0,  LTLTLTLTLT   678,0

1

22
,,

, 





LTbmLTbmLT

bmLT


  

 LT buckling resistance: 
1

,,,,
M

y

yplbmLTECRdb

f
WM


   kNmM ECRdb 696,341,, 

 
 

The LT buckling resistance of the member according to the EN 1993-1-1, section 6.3.2.3. Lateral 

torsional buckling curves for rolled sections or equivalent welded sections: 

 imperfection factor curve 'c': 49,0LT  recommended values for curves: 4,00, LT  75,0  

    903,015,0 2
0,  LTLTLTLTLT   717,0

1

22
,,

, 





LTbmLTbmLT

bmLT


  

 LT buckling resistance: 
1

,,,,
M

y

yplbmLTECRdb

f
WM


   kNmM ECRdb 616,361,,   
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COMPARISON OF THE RESULTS 

 

For the evaluation of the novel method the LTB resistance of the tested member was determined by 

the EN1993-1-1 methods too. The results of the Eurocode and the novel, APF based method are 

compared with the results of the numerical simulation. The results are summarized in Table 2. 

 
Table 2: Comparison of LTB resistances of the prevented end-warp sample 

Determination method LTB resistance (kNm) 
Difference on safe 

side (%) 

ANSYS simulation 347,292 (basic) 

APF based method 324,905 6,890 

EC - 6.3.2.2 341,696 1,638 

EC - 6.3.2.3 361,616 -3,961 

 

 

5. Generalization of the novel method for simple beams loaded by triangular 

moment distribution 
 

5.1 Generalization based on the theory of elastic extrapolation 

 

The generalization of the novel method for the case of members with end-fork boundary conditions 

and loaded by triangular moment distribution was based on the theory of elastic extrapolation, 

similar to the Section 4. However, in this case the methodology is more complicated. Due to the 

triangular moment distribution the critical cross-section is not known, it shifts from the middle of 

the beam towards the maximum value of the bending moment. Therefore, the member has to be 

divided into segments by the appropriate number of sections and each chosen cross-section has to 

be examined. For each cross-section the non dimensional slenderness can be determined by Eq.8: 

 

cr

iult

i





,
  (8) 

where λi is the slenderness of the i-th cross-section, αult,i is the minimum load amplifier of the cross-

sectional load to reach the characteristic resistance of the cross-section and αcr is the minimum 

amplifier of the load of the beam to reach the elastic critical resistance of the member. Similar to the 

Section 4, with the determined slenderness an equivalent, basic model member has to be defined for 

each cross-section. Then, with these basic model members a generalized form of the novel method 

has to be carried out. 

 

The generalized form of the novel method means, that first a load value (MEd) is supposed on the 

member. For this load value a load amplification factor (αb,Rd,i) has to be determined for each cross-

section. This amplification factor takes into account two effects: the load distribution and the first 

buckling shape of the member. According to the methodology, the αb,Rd,i amplification factor for 

each cross-section has to be determined as the multiplication of two factors: the αult,i load amplifier 

and the χLT,i reduction factor for LT buckling. The χLT,i reduction factor has to be calculated for the 

equivalent, basic model member which is defined belonging to the i-th cross-section. The 

calculation method is similar to the method detailed in the example in Section 4.2. The only 

difference is that the value of the generalized imperfection factor has to be weighted according to 

the first buckling mode of the member. Multiplying the calculated values of αult,i load amplifier and 

the χLT,i reduction factor the values of αb,Rd,i amplification factor can be determined for each cross-

section. The cross-section belonging to the minimum value of the amplification factors can be 
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defined as the critical. Multiplying the minimum value of the amplification factors (αb,Rd,min) with 

the applied load value (MEd) the LT buckling resistance of the member can be calculated. An 

example for this methodology is detailed in Section 5.2. 

 

5.2 Example: Ayrton-Perry based method for triangular moment distribution 

 

The task is the determination of the LT buckling resistance of a sample member with end-fork 

boundary conditions, loaded by triangular moment distribution. The properties of the cross-section, 

the member length and the material are the same as given in Section 3.3. The resistance has to be 

determined with numerical simulation, the novel Ayrton-Perry based method and standard methods 

given by the Eurocode, and then these results have to be compared. 

 

NUMERICAL SIMULATION IN ANSYS 

 

For the numerical simulation the shell finite element model of the given member was defined, and 

GMNI analysis was carried out. As the results of the test the bending resistance and the first 

buckling mode of the member were determined. 

 Load carrying capacity of the member: kNmM ANSYSRdb 275,423,,   

 

THE AYRTON-PERRY FORMULA BASED METHOD 

 

The value of the bending moment on one of the ends of the member is supposed to be 100 kNm. 

The amplification factor belonging to the LT buckling resistance has to be determined. For the 

examination the member is divided into 20 segments. The amplification factor has to be determined 

for every cross-section, depending on the load distribution and the first buckling shape. The 

minimum value of the factors will be used for the calculation of the LT buckling resistance.  

 

The effect of the cross-sectional bending load is taken into account by the minimum load amplifier: 

 Bending moment on one of the ends of the beam: kNmM Ed 100

  Cross-sectional bending resistance: kNmfWM yyplRkc 346,504,, 

 
 Load amplifier for the cross-sectional, characteristic resistance: 

iEd

Rkc

iult
M

M

,

,

, 

 

The reduction factor for LT buckling is calculated for each cross-section. For the calculation, the 

values of slenderness belonging to each cross-section are determined and the equivalent, basic 

model members are defined.  

 Elastic critical bending moment: kNm
IE

IGL

I

I

L

IE
M

z

t

z

z
cr 062,661879,1

2

2

2

2












 

 

 Load amplifier for the elastic critical beam resistance: 
Ed

cr
cr

M

M
  611,6cr

 

 Slenderness for LT buckling: 
cr

iult

iLT





,

, 

 

According to the theory of elastic extrapolation the equivalent, basic model member has to be 

defined belonging to each cross-sections. The member length of the equivalent beams: 

 Elastic critical bending moment for the basic model: 
2

,

,

,,

iLT

Rdc

ibmcr

M
M


  
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 Equivalent member length: 
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,
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 Elastic critical normal force: 
2

,

2
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z
ibmcr

L

IE
N





 

The h/b ratio of the IPE500 profile is 2,5 therefore, based on the appropriate calibrated equation 

(Eq.6) the values of the total lateral displacement of the midpoint of upper flange can be calculated: 

 Calibrated equation: 
  

9,0350

9,03509,01000
2




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 Total lateral displacement of the upper flange: 
















ical
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From these values, using the condition for the initial shape (Eq.1), the amplitudes of the 

imperfection components and also the generalized imperfection factor (Eq.3) can be determined for 

the virtual, equivalent, basic model members belonging to each cross-sections: 

 displacement: 

2
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,,
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,,0
f

ibmcr

ibmcr
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ical th

M

N

v
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
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The values of the generalized imperfection factor have to be weighted according to the first 

buckling mode of the member: 

 lateral displacement of the cross-section: iv  maximum displacement: maxv  

 The weighted values of the generalized imperfection factor: 
max

,,,
v

vi
ibmLTiLT   

Applying the formulae of the LT buckling curves determined in [1] (Eq.5) the reduction factors for 

LT buckling can be calculated: 

  2
,, 15,0 LTiLTiLT    

2
,

2
,,

,

1

iLTiLTiLT

iLT






  

After calculating the values of the minimum load amplifier and reduction factors, multiplying these 

values the amplification factors can be determined for each cross-section: 

 iiultiRdb   ,,,  
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Table 3: The results of the calculation 

 

 

Choosing the minimum value of the amplification factor the LT buckling resistance of the member 

can be calculated. In the sample: 

 The minimum value of the amplification factor: 17027,4min,, Rdb  

 LT buckling resistance: kNmMM EdRdbAPRdb 027,417min,,,,   

 

THE EUROCODE METHODS 

 

The LT buckling resistance of the according to the EN 1993-1-1, section 6.3.2.2. Lateral torsional 

buckling curves - General case: 

 Slenderness for LT buckling: 
cr

Rkc

LT
M

M ,
  873,0LT

 
 imperfection factor curve 'b': 34,0LT  recommended value for curves: 2,00, LT  

    996,015,0 2
0,  LTLTLTLTLT   678,0

1

22
,,

, 





LTbmLTbmLT

bmLT


  

 LT buckling resistance: 
1

,,,
M

y

yplLTECRdb

f
WM


   kNmM ECRdb 049,342,, 

 
 

The LT buckling resistance of the member according to the EN 1993-1-1, section 6.3.4. General 

method for lateral and lateral torsional buckling of structural components: 

 Load amplifiers: 043,5
,

, 
Ed

Rkc

kult
M

M
  611,6, 

Ed

cr
opcr

M

M


 

 Global non dimensional slenderness: 
opcr

kult

op
,

,




   873,0op

 
 Reduction factor according to 6.3.2.3: 
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 imperfection factor curve 'c': 49,0LT  recommended values for curves: 4,00, LT  75,0  

    902,015,0 2
0,  LTLTLTLTLT   718,0
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LT
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 Correction factor depending on moment distribution: 752,033,1/1 ck

  Modification factor:      877,08,02115,01
2
 LTckf   

 Modified reduction factor: 818,0
,

mod, 
f

bmLT
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 LT buckling resistance: 
1

,mod,,,
M

y

yplLTECRdb

f
WM


   kNmM ECRdb 526,412,, 

 
 

COMPARISON OF THE RESULTS 

 

For the evaluation of the novel method the LTB resistance of the tested member was determined by 

the Eurocode methods too. The results of the Eurocode and the novel, APF based method are 

compared with the results of the numerical simulation. The results are summarized in Table 4. 

 
Table 4: Comparison of LTB resistances of the triangular moment distribution sample 

Determination method LTB resistance (kNm) 
Difference on safe 

side (%) 

ANSYS simulation 423,275 (basic) 

APF based method 417,027 1,498 

EC - 6.3.2.2 342,049 23,747 

EC - 6.3.4 412,526 2,605 

 

 

6. Conclusions 
 

In this paper the finite element model of steel members used for the numerical tests is detailed. We 

examined the effect of changing the types and amplitudes of material imperfections and geometrical 

imperfections. It was stated that the distribution types of residual stresses and shapes of initial 

geometry of the beams have not significant effect on the LT buckling resistance.  

 

In the present paper we described an extended and improved calibration process for the Ayrton-

Perry formula derived for the basic model in [1]. We proposed equations for the calculation of the 

total lateral displacement of the midpoint of upper flange. With the new proposals and the formulae 

based on the Ayrton-Perry formula a sufficiently safe and accurate method is given for the 

examination of the LT buckling resistance of bended beams with end-fork boundary conditions.  

 

Based on the theory of elastic extrapolation the generalization of the novel method was introduced 

for beams with prevented end-warp and also for beams with triangular moment distribution. The 

application of the method was demonstrated through examples. Therefore, it is stated that the novel, 

Ayrton-Perry formula based method and the LT buckling curves calibrated for the basic model are 

also appropriate for the case of beams with prevented end-warp and triangular moment distribution 

to calculate the bending moment carrying capacity. Naturally, more extensive numerical test 

program and calibration is needed to examine the validity of the theory of elastic extrapolation for 

the case of beams with other boundary conditions and load cases. Comparing the results of the 

novel method with the results of numerical simulations and standard methods it can be seen that the 

APF based resistances are properly accurate. Examined the existing methods it can be stated that 
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the novel, APF based method is appropriate for LTB type design problems and beneficial for 

practical application. 

 

 

7. References 
 
[1]  Szalai J, Papp F. On the theoretical background of the generalization of Ayrton-Perry type resistance 

formulas. Journal of Constructional Steel Research, 66:(5), pp. 670-679, 2010. 

 

[2]  Badari B, Papp F. Calibration of the Ayrton-Perry resistance formula - A new design formula for LTB of 

simple beams. In: Dunai L, Iványi M, Jármai K, Kovács N, Vigh LG, editors. Proceedings of 

EUROSTEEL 2011 - 6th European Conference on Steel and Composite Structures. Budapest; pp. 1797-

1802, 2011. 

 

[3] Chen WF. Structural stability: from theory to practice. Engineering Structures, 22:116-122, 2000. 

 

[4] Nethercot DA. Steel research after EC3 and EC4. In: Dunai L, Iványi M, Jármai K, Kovács N, Vigh LG, 

editors. Proceedings of EUROSTEEL 2011 - 6th European Conference on Steel and Composite 

Structures. Budapest; pp. 1797-1802, 2011. 

 

[5] Badari B, Papp F. Calibration of the Ayrton-Perry resistance formula for lateral-torsional buckling of 

beams with prevented end-warp. In: Cosmin G Chiorean, editor. Proceedings of the First international 

conference for PhD students in Civil Engineering. Cluj-Napoca, Romania, pp. 103-110, 2012. 

 

[6]  Szalai J, Papp F. A new residual stress distribution for hot-rolled I-shaped sections. Journal of 

Constructional Steel Research, 61, pp. 845-861, 2005. 

 

[7]  Rebelo C, Lopes N, Simões da Silva L, Nethercot D, Vila Real PMM. Statistical evaluation of the 

lateral-torsional buckling resistance of steel I-beams, Part 1: Variability of the Eurocode 3 resistance 

model. Journal of Constructional Steel Research, 65, pp. 818-831, 2009. 

 

[8]  Boissonnade N, Somja H. Influence of Imperfections in FEM Modeling of Lateral Torsional Buckling. 

In: Structural Stability Research Council. Proceedings of the Annual Stability Conference. Texas; 2012. 

 

[9]  Kala Z, Kala J. Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements 

and Nonlinear Computation Methods. WSEAS Transactions on Applied and Theoretical Mechanics, 

Vol. 4, pp. 105-114, 2009. 


