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Abstract 
 

After earthquakes it becomes very visible what types of building construction have withstood the 

forces of the earthquake and which did not perform adequately. Analyzing the nearly collapsed and 

broken structures gives a good insight in the possible architectural and engineering design 

mistakes, faults in the detailing and the mismanagement of the construction by the building 

contractors. Stability calculations are critical in structural design can cause significant damage to 

structural column members. In discussing the stability of structural systems, the goal is the 

investigation of the equilibrium condition from the point view of stability and instability and 

determines the conditions which make the system unstable. The stability is considered for relatively 

thin columns with small cross section area like steel sections and is rarely discussed in usual 

problems of structural engineering related to reinforced concrete sections and is propounded in 

special structures. Concrete is a non-homogeneous and anisotropic material. Modeling the 

mechanical behavior of Reinforced Concrete (RC) is still one of the most difficult challenges in the 

field of structural engineering. There are some factors which cause the mechanical factors of 

concrete in right dimension are not uniform and isotropic in high columns. These factors effect on 

concrete elasticity modulus, Poisson coefficient and regular relations of columns critical load. 

There are various research works available in the literatures for determining sensitivity of modulus 

of elasticity to concrete strengths and other parameters but in this study, a different procedure was 

taken into account to investigate the effect of material uncertainty, selected seven different design 

codes were considered in the analyses. Instability of linear elastic columns is analyzed by the 

energy method. The energy method for a column provides a criterion, which determines whether the 

column is stable or not. Due to the numerous outputs obtained, software package have been written 

in Matlab and analysis on data and drawing related charts have been done. 

 

 

Keywords: Concrete Columns, Elastic & Inelastic Stability, Inhomogeneous, Sensitivity Analysis 

 

1. INTRODUCTION 
  
Most structural failures are the result of an error made by one of the people involved in the great 

number of steps between the original idea and the completion of the final structure. For reinforced 

concrete construction, mainly inadequate column designs and over-weight structures are the cause 

of fatal building failure and related human victims. 

 

Columns are structural members in buildings carrying roof and floor loads to the foundations. Most 

columns are termed short columns and fail when the material reaches its ultimate capacity under the 
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applied loads and moments. The limit loads for columns, having major importance to a building’s 

safety, are considered stability limits. Thus, a designer must evaluate the critical load limits. In 

reality, some of the design parameters in structural analysis may be disregarded which can lead to 

uncertainties. 

 

Buckling, also known as structural instability may be classified into two categories: 1, bifurcation 

buckling and 2, limit load buckling. In bifurcation buckling, the deflection under compressive load 

changes from one direction to a different direction (e.g., from axial shortening to lateral deflection). 

The load at which the bifurcation occurs in the load-deflection space is called the critical buckling 

load or simply critical load. In limit load buckling, the structure attains a maximum load without 

any previous bifurcation, i.e., with only a single mode of deflection, [1]. 

 

The first study on elastic stability is attributed to Leonhard Euler [1707–1783], who used the theory 

of calculus of variations to obtain the equilibrium equation and buckling load of a compressed 

elastic column, (1). Most basic linear elastic problems of structural stability were solved by the end 

of the 19
th

 century, although further solutions have been appearing as new structural types were 

being introduced. In discussing the stability of structural systems, the goal is the investigation of the 

equilibrium condition from the point view of stability and instability and determines the conditions 

which make the system unstable, [2~5]. 

 

Slender columns buckle and the additional moments caused by deflection must be taken into 

account in design. 1, Short columns when the ratios lex/h and ley/b are both less than 15 for braced 

columns and less than 10 for un-braced columns and 2, Slender columns when the ratios are larger 

than the values given above. The buckling load of stocky columns must be determined by taking 

into consideration the inelastic behavior, (Euler, 1744) [4]. 
2 2/ ( )P EI kL         (1) 

Where E is the modulus of elasticity of the column member representing the material property, I is 

the area moment of inertia of the cross-section, k is the column effective length factor, whose value 

depends on the conditions of end support of the column and L is the length of the column. 

In this research, critical load or stability of inhomogeneous reinforced concrete columns have been 

investigated. To do this, sensitivity analysis of critical loads to various parameters such as E, I and 

L have been investigated. Also studying has been done on a set of concrete columns with and 

without inhomogeneous properties. The column section is generally square or rectangular, but 

circular and polygonal columns are used in special cases. Consider now columns of square cross 

sections. The column slenderness is defined as L/r, where r=h/12
0.5 

and h=side of the square cross 

section =150mm. In numerical calculations, f’c=250 kg/cm
2
 is considered. The column is reinforced 

symmetrically by eight axial steel bars and the steel ratio ρ=0.01 and 0.03. The cover of concrete 

bars is such that the axial bar centers are about 50 mm from the surface. Furthermore, Es=2e
6
 

kg/cm
2
 and fy=4000 kg/cm

2
. 

 

2. MATERIAL PROPERTIES 

2.1. Concrete Strength 

 

Material properties affect the critical value of the buckling loads. Concrete strength is counted as 

one of the important parameters for the material properties in reinforced concrete structure design. 

The material modeling of reinforced concrete consisting generally of three phases: cement mortar, 

aggregate grains and reinforcing steel bars, is a strong compromise between the structural 

phenomena and available material parameters. In structural analysis, reinforced concrete materials 

are modeled as a macroscopically homogeneous material with response influences by each of the 
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phases. Stress-strain curves are an extremely important graphical measure of a material’s 

mechanical properties, (Fig. 1). 

 
 

2.2. Modulus of Elasticity  

 

Material properties can be defined through concrete strength and modulus of elasticity as proposed 

in different national building codes through various formulas for the same values of concrete 

strength (Fig. 2). Modulus of elasticity of concrete is a key factor for estimating the deformation of 

buildings and members, as well as a fundamental factor for determining modular ratio, n, which is 

used for the design of section of members subjected to flexure. Modulus of elasticity of concrete is 

frequently expressed in terms of compressive strength. In the present study, selected seven different 

design codes were considered in the analyses (table I). Slope of stress-strain curve is defined as 

elasticity modulus in concrete.  

 

This modulus relates to the kind of concrete, concrete age and speed in loading, concrete properties 

and mixing percent and more importantly relates to definition of concrete elasticity modulus. 

According to table I, the two factors, compressive strength and weight, have relations with elasticity 

modulus. In concreting, by being careful about how to compact the concrete and its completion, the 

concrete will have much compressive strength. So all the aspects that influence in compressive 

strength and weight have in direct influence in elasticity modulus too.   

 

 
Fig. 2.  A: Todeschini model, B: Hognestad model, s: secant modulus, t: tangent modulus, r: reduced 

modulus of elasticity 

 

 
Fig. 1. Stress-strain curves, left: general, right: Todeschini 
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2.3. Inhomogeneous Behaviour of Concrete 

 

Using the same mixing, concrete could get different Compressive strength results in different 

situations. Following is some of effective factors on compressive strength of concrete. The 

compressive strength of concrete depends on some main factors for examples the aggregate 

grading, aggregate/cement ratio as well as the water/cement ratio. Also depends on some minor 

factors or site factors for examples grout leakage, poor compaction (the influence of gravity force 

on concentration of layers and type of concrete compression vibration), segregation, grading limits, 

poor curing and Chemical attacks such as chlorides, sulfates, carbonation, alkali-silica reaction and 

acids. Some studies show that humidity and good temperature in concreting after 180 days can 

increase the concrete strength to 3 times. In those seasons with straight sunshine, the temperature 

increases and humidity of concrete section decreases 2 or 3 degrees. This factor is important in 

column sections and surrounding beam sections of roofs.  

 

Concrete exhibits a large number of micro-cracks, especially at the interface between coarser 

aggregates and mortar, even before the application of any external loads. The presence of these 

micro-cracks has a great effect on the mechanical behavior of concrete, since their propagation 

(concrete damage) during loading contributes to the nonlinear behavior at low stress levels and 

causes volume expansion near failure. Many of these micro-cracks are initially caused by 

segregation, shrinkage or thermal expansion of the mortar. Some micro-cracks may develop during 

loading because of the difference in stiffness between aggregates and mortar, (Mostofinejad, 2006, 

Tim Gudmand-Høyer and Lars Zenke Hansen, 2002), [6,7]. 

 

For example a reinforced concrete column with known high is supposed.  Regarding to the column 

height, concreting may be done in 2 or more steps. Segregation that cause by levels and height of 

concreting and poor compacting of concrete may change the density of column concrete. If density 

of the concrete in bottom section of the column (x/L=0) equals to Wc, then the density at the top of 

the column section (x/L=1) would be Kw*Wc. Where Kw is the coefficient smaller than one and 

shows the density differences of bottom and top. For instance Kw=0.95 means the density of 

concrete in top of the column is 95% of density of the bottom. Sensitivity analysis of elasticity 

modulus to various ratios of Kw, suppose of constant compressive strength of concrete is shown in 

Fig. 3a.  

 

With a change in concreting and compacting methods, the compressive strength in bottom and top 

TABLE I 
MATERIAL PROPERTIES AS A FUNCTION OF THE COMPRESSIVE STRENGTH 

No Code formula References 

1 ACI-2008 '

cEc 4.73 f .  American Concrete Institute 

2 CEB-90  
1/3

'

cEc 10 f 8  .  Euro-International Concrete 

Committee 

3 TS-500 '

cEc 3.25 f 14  .  Turkish Standard Committee 

4 IDC-3274 '

cEc 5.7 f .  Italian Design Council 

5 GBJ-11-89 
2

'

c

10
Ec

34.7
2.2

f


 

 
 

.  Chinese Design Council 

6 ABA '

cEc 5.0 f .  Iranian Concrete Code 

7 Mos-2005  
0.35

'

cEc 8.3 f .  Prof. Mostofinejad, Davood [6] 
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of the column will be different. If the compressive strength of the concrete in bottom section of 

column (x/L=0) equals to f’c, then the strength at the top of the column section (x/L=1) would be 

Kc*f’c. Where Kc is the coefficient smaller than one and shows the compressive strength differences 

of bottom and top. For instance Kc=0.95 means the compressive strength of concrete in top of the 

column is 95% of compressive strength of the bottom. Sensitivity analysis of elasticity modulus to 

various ratios of Kc, suppose of constant density of concrete (kw=1) is shown in Fig. 3b. 

 

 
 

 
 

In practice, with a change in gradation and concrete compaction, the density and the compressive 

strength of concrete are change (table II). It may happen that with a small change in density and 

without any external interference, the compressive strength of concrete decrease due to the decrease 

in density, it means if Kw=0.95 then Kc may equals to 0.9. Sensitivity analysis of modulus of 

elasticity with both Kw and Kc is shown in Fig. 4. If the density of concrete in top of the column is 

%95 of the density in bottom and it may cause that the compressive strength in top of the column be 

%90 of the bottom, thus the elasticity modulus of concrete in top of the column become %88 of the 

elasticity in bottom, (Fig. 5). 

 

In this form the elasticity follows a second order equation (KE). This second order equation shows 

the inhomogeneous behavior of concrete in column height and one can calculate the critical load. 

These second order equation is used to estimate the changes of elasticity modulus, (Vahid 

Shahsavar, 2010 [8]. 

 2

00.003 0.125 1xE E           (2) 

 

TABLE II 
ELASTIC MODULUS VALUES FOR A GIVEN CONCRETE STRENGTH 

References Ec, modulus of elasticity (kg/cm
3
) x 10
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c =

0
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ACI-2008 2.34 2.22 2.77 2.63 

CEB-90 3.16 3.08 3.45 3.58 

TS-500 2.98 2.9 3.28 3.18 

IDC-3274 2.82 2.68 3.34 3.17 

GBJ-11-89 2.75 2.64 3.09 2.99 

ABA 2.48 2.35 2.93 2.78 

Mos-2005 2.53 2.44 2.84 2.74 

 

 
Fig. 3. Sensitivity analysis of Ec with Wc and f’c according to different Kw and Kc ratios 
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3. STABILITY PROBLEM 

3.1. Eigenvalue and stability of Column 

 

Instability of linear elastic columns is analyzed by the energy method. The energy method for a 

column provides a criterion, which determines whether the column is stable or not. 

. .
.sin

n x
v

L




 
  
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           (3) 

Where v is shape function and, 
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x
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To compare the critical load for liner (first order) equation of elasticity modulus is also estimated. 

  00.122 0.999xE E           (11) 

 
Fig. 5. Sensitivity analysis of Ec with Wc and f’c according to column nonparametric height (Kw=0.95 & 

Kc=0.90) 

 

 
Fig. 4. Sensitivity analysis of Ec with Wc or f’c according to column nonparametric height left: Kw=0.95, right: 

Kc=0.90) 
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Supposing a liner relation of elasticity modulus of concrete in column height instead of second 

order equation, critical load of first mood of buckling has %0.032 error and the error of second 

buckling mood is %0.044. Column critical load by homogeneous behave of concrete with unique 

length of column will be 9.869 EI. It means that if changing of the elasticity modulus equals to 

KE=0.88 then the critical load decrease from 9.869 to 9.261, around %94. 

 

3.2. Sensitivity of Critical Buckling Load on Material Properties 

 

There are various research works available in the literatures for determining sensitivity of modulus 

of elasticity to concrete strengths. In this study, a procedure was taken into account to investigate 

the effect of material uncertainty. In the present study, selected seven different design codes were 

considered in the analyses (table I). Relationships of f’c and Ec are expressed in MPa and in GPa, 

respectively. Relationship curves of elasticity Modulus and various concrete strengths for different 

design codes are shown in Figs. 6 and 7, (Korkmaz et al., 2011, Mostofinejad, 2006), [5,6]. 

 

 

 

 

3.3. Tangent-Modulus Theory 

 

According to the tangent-modulus theory (Engesser theory) of inelastic buckling, column remains 

straight until inelastic critical load is reached. At that value of load, the column may undergo a 

small lateral deflection. The resulting bending stresses are superimposed upon the axial 

compressive stresses SA. Since the column starts bending from a straight position, the initial bending 

stresses represent only a small increment of stress. Therefore, the relationship between the bending 

 

 
Fig. 7. Relationship curves of elasticity modulus and various concrete strengths for different design codes, left: Kc=0.9, 

right: Kc=0.6 [Kc=f’c/f’c0] 

 

 

 
Fig. 6. Relationship curves of elasticity Modulus and various concrete strengths for different design 

codes, Kc=1 
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stresses and the resulting strains is given by the tangent modulus. Since the tangent modulus Et 

varies with the compressive stress SP/A, we usually obtain the tangent-modulus load by an iterative 

procedure. 
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
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f
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s

f f
E





 
          (18) 

2

"2
1t s

c

E E
f


           (19) 

Where f
c 

is the compressive stress, f
ck 

is the characteristic compressive strength of cubes, ε
c 

is the 

compressive strain, ε
0 

is the strain corresponding to f
ck 

= 0.002, ε
cu 

is the ultimate compressive strain 

= 0.003 (Based on Todeschini concrete stress-strain equation). 

 

3.4. Reduced-Modulus Theory 

 

The tangent-modulus theory is distinguished by its simplicity and ease of use. However, it is 

conceptually deficient because it does not account for the complete behavior of the column. The 

results of such analyses show that the column bends as though the material had a modulus of 

elasticity between the values of E and Et. This “effective modulus” is known as the reduced 

modulus Er , and its value depends not only upon the magnitude of the stress (because Et depends 

upon the magnitude of the stress) but also upon the shape of the cross section of the column. Thus, 

the reduced modulus Er is more difficult to determine than is the tangent modulus Et. In the case of 

a column having a rectangular cross section, the equation for the reduced modulus is: 

2

4

( )

t
r

t

EE
E

E E




         (20) 

2

2

r
r

E I
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L
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           (21) 

2

2

r
r

E

L

r


 

 
 
 

          (22) 

 

3.5. Effects of Confinement on Interaction Diagrams 

 

The effects of confinement on a structural column in a building are mainly due to the presence of 

lateral reinforcement provided over the column height. It results in higher capacity and ductility of a 

column that help to prevent the column from brittle failure. Several stress-strain relationships of 

confined concrete available in literature such as Kent-Park, Sheikh-Uzumeri, Mander et al., Yong-

Nawy, Cusson- Paultre, Diniz-Frangopol, Kappos- Konstantinidis, Hong-Han, and Kusuma-Tavio. 

Kent-Park and Mander et al. relationships are adopted in the study. Also the unconfined concrete 

model adopted in the study is Todeschini stress-strain model, (Tavio, 2008), [9]. 
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3.6. Elastic Second-Order Analysis 

 

In defining the critical load, the main problem is the choice of stiffness EI that reasonably 

approximates the variations in stiffness due to cracking, creep, and nonlinearity of the concrete 

stress-strain curve. Second-order analysis shall consider material nonlinearity, member curvature 

and lateral drift, duration of loads, shrinkage and creep, and interaction with the supporting 

foundation. The analysis procedure shall have been shown to result in prediction of strength in 

substantial agreement with results of comprehensive tests of columns in statically indeterminate 

reinforced concrete structures. Elastic second-order analysis shall consider section properties 

determined taking into account the influence of axial loads, the presence of cracked regions along 

the length of the member, and the effects of load duration. The stiffness (EI) used in an analysis for 

strength design should represent the stiffness of the members immediately prior to failure. This is 

particularly true for a second-order analysis that should predict the lateral deflections at loads 

approaching ultimate, (Tavio, 2009), [10]. The moments of inertia of compression and flexural 

members, I, shall be permitted to be computed as follows (ACI-318): 

0

0.80 25 1 0.5 0.875st u u
m g g

g u

A M P
I I I

A P h P

  
       

  

     (23) 

Where Ast is the rebar’s area, Ag is the gross section area, Pu and Mu are the factored loads and P0 is 

the critical buckling load for the column. Pu and Mu shall be determined from the particular load 

combination under consideration or the combination of Pu and Mu determined in the smallest value 

of I. I need not be taken less than 0.35Ig. 

When sustained lateral loads are present, I for compression members shall be divided by (1 + βd). 

The term βd is the ratio of maximum factored sustained shear within a story to the maximum 

factored shear in that story associated with the same load combination, but shall not be taken greater 

than 1.0. 

In lieu of a more precise analysis EI may be taken either as: 

5

1

c g

s s

mm

d

E I
E I

EI



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
         (24) 

2

s t t gI C I            (25) 

d

h
            (26) 

st
t

g

A

A
            (27) 

Where Ct introduced in table III. The greatest emphasis is currently being placed on the analysis of 

instabilities and bifurcations caused by propagation of softening damage or fracture in materials, 

which is important not only from the physical and engineering viewpoint, but also from the 

viewpoint of computational modeling. Fig. 8 shows cracked moments of inertia of compression and 

flexural members according to different reinforcement ratios. Also fig. 9 shows variety of EImm 

values according to different reinforcement ratios. 

 

 

TABLE III 
DEFINITION OF CT BASED ON CROSS SECTION SHAPE AND NUMBER OF BARS 

 

 

Shape    

Number of 

bars 

8 12 16 

Ct 2.2 2.1 2.06 
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The deformations due to shear forces are neglected in the classical ending theory, since the cross 

sections are assumed to remain normal to the deflected beam axis. This assumption is usually 

adequate; however, there are some special cases when it is not. The shear deformations can be taken 

into account in a generalization of the classical bending theory called Timoshenko beam theory. 

Usually elastic modulus changes with critical loads, fig 10. 

 

 
 

When the column is stocky, or built up (latticed or battened) or of a composite-type construction, 

the application of Euler (classical) beam theory will overestimate the buckling loads. This is due to 

the neglect of transverse shear deformation in the Euler beam theory. A more refined beam theory, 

known as the first-order shear deformation theory or Timoshenko beam theory, that incorporates the 

shear deformation effect was proposed by Engesser (1891) and Timoshenko (1921). According to 

the Engesser–Timoshenko beam theory, the stress–resultant–displacement relations are given by: 
dθ

M E.I.
dx

           (28) 

s

dw
V K GA

dx

 

  
 

         (29) 

In which  x s the longitudinal coordinate measured from the column base, M the bending moment, V 

the transverse shear force, θ the rotation in the Engesser–Timoshenko column and w the transverse 

 
Fig. 9. EImm according to different reinforcement ratios (βd=0, Ct=2.2, ACI318) 

 
 

 

 
Fig. 8. Cracked moments of inertia of compression and flexural members according to different reinforcement ratios, left 

e=0, Mu=0, right e=%5, Mu=0.05*h*Pu 

 

 
Fig. 10. Elastic modulus change with critical load according to different codes, (left Kw=1, right Kw=0.8) 
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deflection. The shear correction coefficient Ks in the (29) is introduced to account for the difference 

in the constant state of shear stress in the Engesser–Timoshenko column theory and the parabolic 

variation of the actual shear stress through the depth of the cross-section, (Bazant, 2000, 

Timoshenko, 1921), [1,11]. 
4 2

4 2

d w d w
k 0

dx dx
           (30) 

Where     
x

x
L

            w w                           (31) 

1 2 3 4w C sin kx C cos kx C x C           (32) 

For Pinned-Pinned end: 0 and  0 dvw
dx

  then sin 0k                (33) 

By comparing the stability criteria of the Timoshenko columns with their Euler counterparts in (1), 

it is clear that the Timoshenko critical load P
T

cr and the Euler critical load P
E

cr are related by: 

1

E
T cr

cr E

cr

s

P
P

P

K GA





         (34) 

The higher-order shear deformation beam theory, proposed by Bickford (1982) and Heyliger and 

Reddy (1988), does away with the need of the shear correction factor by assuming that the 

transverse normal to the centroid axis deforms into a cubic curve. Using this Bickford–Reddy beam 

theory, Wang et al. (2000) showed that for pinned ended columns, fixed ended columns and elastic 

rotationally restrained ended columns, the Bickford–Reddy critical load P
R

cr is related to the Euler 

critical load P
E

cr by: 
2

1

1

E

cr xx

R E xx
cr cr E

cr xx

xx

P D

GAD
P P

P D

GAD

 
 

 
 

 
 

        (35) 

Where 2

2

4
,  2

3
xx xx xx xxD D F H

h
       and   2 4 6, , ( , , )xx xx xx

A

D F H z z z EdA 
 are the higher-order 

rigidities and h is the height of the column cross section. For example, for a square cross-section 

column, (35) simplifies to: 

1
70
17

1
14

E

cr

R E

cr cr E

cr

P

GAP P
P

GA

 
 

  
  
 

         (36) 

 

Fig. 11 shows Critical Load change with δ/L and L/r ratios according to different codes for three 

types of theories, Euler, Timoshenko and Reddy. Also comparisons of the results of the theories are 

represented in table IV. 

 
 

 

TABLE IV 
CRITICAL LOADS VALUES FOR VARIOUS REFERENCES 

 

References 

Pcr, (ton) 

Euler 

(equation) 

Kw=1 

Timoshenko 

(equation) 

Kw=1 

ACI-2008 39 38.92 

CEB-90 52.65 52.53 

TS-500 49.67 49.56 

IDC-3274 47 46.9 

GBJ-11-89 45.86 45.76 

ABA 41.23 41.14 

Mos-2005 42.11 42.02 
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4. INHOMOGENEOUS FORMULATION OF COLUMN BY THE 

ENERGY METHOD 
 

Euler's equation is given from solving of a differentiating of deformation curves and in some parts it 

is a little complex and we should use approximation equations based on system energy. Elasticity 

modulus, E, is defined by ACI-318 as: 

1.5 '

0 2
0.1347 318c c

kg
E W f ACI

cm

 
  

 

       (37) 

   01 1cx w cW K W           (38) 

Where Wc and Wc0 are the density of concrete and Wcx is the inhomogeneous formulation of the 

density. Inhomogeneous formulations of the compression strength, f
’
cx, and elasticity modulus, Ex, 

are represented as: 

  ' '

01 1cx w cf K f           (39) 

     
1.5

01 1 1 1x w wE K K E             (40) 

1 wK             (41) 

     
1.5 2

0 01 1 1xE E E                  (42) 

A Pined-pined column section with P load should be analyzed. In virtual work theorem (spiritual 

form of original shape), virtual work, W, equals with strain energy, U, (5, 6). The actuate form of 

section is supposed as the first mood and an element arch length of column is shown by δ or ds, (3). 

To calculate accomplished work with external load P, we have du=ds-dx that equals to 

displacement of vertical load, (Vahid Shahsavar, 2011, Krauberger N., 2012), [12,13]. 

 Strain energy of column that relates to flexure displacement, compressive load and shear force 

could be calculated by omission of shear force and for a pined-pined column section and with (3~6) 

we can follow the below: 

 
2 2 2

0

1 cos .
2 2

L

wD P L d
L L



  


 
  

 


       (43) 

   
2

2 2

0 0 2

0

1 1 ( sin ) .
2

L

uD E I L d
L




    

 

 
2 22 2

20 0

3

1
3 2

4

E I

L

   


  
 .     

2 22 2
20 0

3

1
3 2

4

E I

L

   


  
   (44) 

   
2

2 2
0 0

22
1

3 2w u cre

E I
D D P

L

   


            (45) 

 
2 2

2
0

1
3 2

cre

cr

P
P

  


           (46) 

To create the stress-slenderness sensitivity curves related to the various codes and various 

inhomogeneous parameters (Kw & Kc), the results of the stability analysis were inspected and 

collected and the outcome is indicated according to the related figures. The sensitivity curves were 

obtained in the different levels of slenderness and various design codes, based on the four famous 

modulus theories, as follows: 1- Euler, 2- Tangent, 3- Secant, 4- Reduced and the results were 

compared. 

In fig. 12, buckling stress versus slenderness for various types of modulus theories and ACI318 

code has been demonstrated, (Left: Kw=0.9, right Kw=1.0). In figs. 13 to 17, buckling stress versus 

slenderness for various inhomogeneous parameters (Kw & Kc) and various design codes have been 

demonstrated. Other studied curves and relationships can't be figured in this paper because of some 

locative limitations. 
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Fig. 14. Pu/P0=1, ρ=%2, e=0, Im =0.65Ig, left ACI code, right CEB code. Kw=0.6 to 1 

 

 
Fig. 13. Buckling stress versus slenderness for various types of modulus theories and ACI-318 code. I=1.0 

Ig, (-)Kw=0.9, (-.) Kw=1.0 

 

 

 
Fig. 12. Buckling stress versus slenderness for various types of modulus theories and ACI-318 code. I=1.0 Ig, 

left: Kw=0.9, right Kw=1.0 

 

 
Fig. 11. Critical Load change with δ/L and L/r ratios according to different codes 
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5. CONCLUSION 
 

In this study, the effect of material uncertainty on the buckling of inhomogeneous reinforced 

concrete columns was investigated. Material properties affect the critical value of the buckling 

loads. Material uncertainty was represented by the main important parameters of concrete as 

concrete strength and elastic modulus. Using the same mixing, concrete could get different 

Compressive strength results in different situations. In practice, with a change in gradation and 

concrete compaction, the density and the compressive strength of concrete are change. Also 

sensitivity analysis of critical loads to various parameters such as E, I and L was investigated. 

Selected seven different design codes were considered in the analyses. Based on the hyper-

geometric solution, numerical values of the buckling capacities for inhomogeneous reinforced 

concrete columns are computed and presented. 

 

Results show if the density of concrete in top of the column is %95 of the density in bottom and it 

may cause that the compressive strength in top of the column be %90 of the bottom, thus the 

elasticity modulus of concrete in top of the column become %88 of the elasticity in bottom. In this 

form the elasticity follows a second order equation. 

 
Fig. 17. Pu/P0=1, ρ=%2, e=0, Im =0.65Ig, MOS reference. Kw=0.6 to 1 

 

 
Fig. 15. Pu/P0=1, ρ=%2, e=0, Im =0.65Ig, left TS code, right IDC code. Kw=0.6 to 1 

 

 

 
Fig. 16. Pu/P0=1, ρ=%2, e=0, Im =0.65Ig, left GBJ code, right ABA code. Kw=0.6 to 1 
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If changing of the elasticity modulus equals to KE=0.88 then the critical load decrease around %94. 

Based on inhomogeneous behavior of concrete in column height and for compressive strengths of 

concrete smaller than 400, ACI code obtains smallest and CEB code obtains largest value of 

elasticity modulus, also critical load of ACI has smallest and critical load of CEB has largest values. 

For compressive strengths of concrete larger than 400, place of ACI replaced with MOS and CEB 

replaced with IDC. The ranking of Design codes in presenting of elasticity modulus changes with 

increasing of compressive strengths of concrete. Critical load versus elasticity modulus point of all 

design codes set on straight line. For specific amount of column slenderness, critical loads outcome 

from various codes may differ up to 35%. Critical loads outcome from ACI and ABA codes are 

conservative and from GBJ, IDC, TS and CEB codes are respectively non-conservative. All 

buckling stress-slenderness curves for various inhomogeneous parameters are parallel. 
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