The Structural Adequacy of a Reinforced Concrete Element Exposed to Fire

Laura-Catinca Leția^{*1}

¹ Technical University of Cluj-Napoca, Faculty of Civil Engineering. 25 G Barițiu Str., 400020, Cluj-Napoca, Romania

(Received 28 July 2014; Accepted 15 November 2014)

Abstract

This paper summarizes an example of a beam fire check using tabulated data and the isotherm $500 \,^{\circ}$ C method. This beam is subjected principally at bending moment. This analysis shows that the reinforced beams may have strength reserves. The correct evaluation of those reserves leads eventually to elaborate the appropriate solution to reconstruct and/or to consolidate the structures affected by fire. There are presented different evaluation formulae, regarding the estimation of a reinforced concrete beam capacity, under fire. For better understanding of the fire effect on a beam, an experimental study should be carried out, but a real fire progress is difficult to be set in laboratory conditions.

Rezumat

Această lucrare prezinta un exemplu de verificare a unei grinzi, solicitată preponderent la moment încovoietor, folosind datele prezentate sub formă de tabele și metoda izotermei 500 °C. Analiza demonstrează că grinzile din beton armat pot avea rezerve de rezistență. Evalauarea corectă a acestor reserve de rezistență duce în final al elaborarea unor soluții potrivite de refacere și/sau consolidare a structurilor afectate de acțiunea incendiilor. Sunt prezentate diferite ecuații de evaluare a capacității portante a grinzilor, sub acțiunea focului. Pentru o înțelegere mai exactă a efectelor incendiilor asupra grinzilor trebuie efectuat un studiu experimental, dar dezvoltarea reală a unui incendiu este dificil de realizat în condiții de laborator.

Keywords: reinforced concrete, bending fire capacity, design, modeling, eurocode.

1. Introduction

When checking the fire adequacy of a structure or of a structural member, the first steps to take should be:

- select the appropriate fire scenario;

- determine the temperature profile.

The fire analysis can be performed on:

- a specific structural element (ELEM);
- part of a structure (PART);
- the entire structure (STRUCT).

In Australia (Australian Standards), in the European countries (Eurocodes) and in the Japanese

^{*} Corresponding author: Tel./ Fax.:0040-264-401.554

E-mail address: catinca.letia@dst.utcluj.ro

Standards (Building Standards Law of Japan) there are provided several methods of fire design:

- using tabulated data (for ELEM);
- simplified calculation methods (for PART);
- advanced calculation methods (for: ELEM+PART+STRUCT).

Nominal fire is the most commonly used.

This example sight the bending capacity of a simply supported beam in fire conditions.
The beams characteristics: bxh= 300x600mm, span length: 5000mm.
Concrete class: C20/25.
Type of reinforcement Bst 500S.
The required fire strength: R60(t=60minutes), R90(t=90minutes), R120 (t=120minutes).

2. Actions

When evaluating the external actions on the element, it can be used the following general equation: $w = \gamma_G \cdot G_k + \gamma_O \cdot Q_k$ (1)

Table 1: Stress evaluation

Conditions	Υ _G	G _k	Υ _Q	Q_k	W [lzN/m]	M _{Ed}
	[-]	[kN/m]	[-]	[kN/m]		
Cold	1.35	20	1.5	60	117	365
Fire	1.0	20	0.3	60	38	119

3. Material characteristics

3.1 Concrete

Table 2.	Concrete	strength	and	safety factors	
1 abic 2.	Concrete	suchgui	anu	safety factors	

	Fire		
	γм [-]		
	1.00		
f _{ck}	f _{ctm}	f _{cd}	$\mathbf{f_{cd}}$
[Mpa]	[Mpa]	[Mpa]	[Mpa]
20	1.5	13.33	20

3.2 Steel in cold conditions

Table 3: Steel yield strength and safety factor for cold conditions

Cold						
γ_{s}						
[-]						
1.15						
f _{yk}	f _{yd}					
[MPa]	[MPa]					
500	435					

4. Cold design

4.1 Reinforcement design

[1] Determine:

$$k = \frac{M_{Ed}}{b \cdot d^2 \cdot f_{ck}} = 0.21 \le k'.$$
⁽²⁾

Computing the lever arm using the equation given in [1]:

$$z = \frac{d}{2} + [1 + \sqrt{1 - 3.53k}] = 400.84[mm] < 0.95 \cdot d = 508$$
 [mm]. (3)

The provided reinforcement aria: $A_{s \text{ prov}}=25.13 \text{ cm}^2$, the equivalent of 8ø20.

4.2 The bending strength

$$\mathbf{M}_{\mathrm{Rd,cold}} = \mathbf{A}_{\mathrm{s,prov}} \cdot \mathbf{f}_{\mathrm{yd}} \cdot \left(\mathbf{d} - 0.5 \cdot \frac{\mathbf{A}_{\mathrm{s,prov}} \cdot \mathbf{f}_{\mathrm{yd}}}{0.85 \cdot \mathbf{f}_{\mathrm{cd}} \cdot \mathbf{b}} \right) = 583 \quad [\mathrm{kN} \cdot \mathrm{m}]$$
(4)

$$M_{Rd,cold} = 583[kN \cdot m] > M_{Ed,cold} = 365[kN \cdot m]$$
(5)

5. Fire design

5.1 Fire design using tabulated data

Eurocode 2[2], states the minimum requirements of the cross-sectional dimensions of the elements. The same requirements can be found in the Australian Building Code (AS 3600-2009)[3] and in Building Standards Law of Japan (BSLJ)[4]. This tabulated data are summarized in table 4.

From Eurocode 2[2], the minimum required axis distance of the reinforcement bar and the nearest concrete face is $a_{min}=55$ mm.

Figure 1. The reinforcement arrangement in the cross-section of the beam. Dimensions used to determine the average distance, a_m .

Standard	Fire exposure &		Din	Dimension		Fire resistance class					
	characte	eristi	cs			R30	R60	R90	R120	R180	R240
Column											
EC2	Exposed	on			b _{min} *)	200	250	300	450	500	600
	4 sides		$\mu_{fi} \ge 0.5$		a _{min}	30	35	45	50	60	70
					$b_{min}^{*)}$	200	350	500	500	600	>600
			$\mu_{fi} \ge 0.7$	- C	a _{min}	30	40	50	60	75	-
AS 3600-	Exposed	on		nm	$b_{min}^{*)}$	200	200	200	300	250	350
2009	more that	ın 1	0.2] u						350	
	sides	and	0.2	Isic	a_{min}	25	25	31	25	40	61
	$N_f * / N_u =$			nen						35	
				dir	b_{min}^{*}	200	200	300	400	350	350
			0.5	lal			300			450	450
			0.5	tion	a_{min}	25	36	45	38	45	63
				sec			31			40	75
				SS-3	b_{min}^{*}	200	250	350	450	350	450
			0.7	LO		300	350			450	
				\cup	a _{min}	32	46	53	40	57	70
Dati				-	1)	27	40		100	51	
BSLJ	Not spec	ified		-	b _{min} *'	-	-	-	120	400	-
					a_{min}	-	30	-	50	60	-
Simply supp	borted and	cont	inuous beam	1		1	1	1	1	1	1
EC2	Not	Sim	ply supported		b _{w.min}	80	120	150	200	240	280
&	specificu	Sim	ply supported	onal		25	40	55	65	80	90
AS 3600-		con	tinuous	ectio	a _{min}	15	25	25	45	60	75
2009	Not aposified		SS-S(4 min	15	23	- 35	43	00	75	
BSLJ	Not specified		Cros	b _{w.min}	-	-	-	-	-	-	
C1-1				a_{\min}	-	-	-	50	60	-	
		A 11	4		1.		[1			
EC2	ied	All	types of		n _{f.min}						
a AS 3600	t cif	sia	08	Ona		60	80	100	120	150	175
AS 5000-	No			ion							
BSUI	Not spec	ified		S-SS	he i		70		100		
DSLJ	Not spec	meu		Cro	nf.min	-	70	-	30	-	-
Simply supported slabs				a_{min}	_	_	_	50	_		
EC2		On	e wav		ain	10	20	30	40	55	65
&	pa	Tw	way	m]	a _{min}	10	20	50	-10	55	05
AS 3600-	ifie	1 vv	l<1.5	ion	amin	10	10	15	20	30	40
2009	bec	Tw	$\frac{1}{2}$ way	sect	amin						
	ot sj	£./4	l.<1.5	SSS-3	amm	10	15	20	25	40	50
	ž	~ y/	- <u></u>	Crc din	amin	10	15	20	25	40	50
Continuous slabs			1								
EC2 Not specified				amin							
	The specified			~	10	15	20	25	40	50	
				. [60							
AS 3600-	Not spec	ified		OSS-	a _{min}	10	10	1.5	20	20	40
2009				LC 1	2	10	10	15	20	30	40

Table 4: Structural adequacy for different concrete elements according to Eurocode 2[2], AS 3600-2009[3] and BSLJ[4].

Where:

 $\mu_{fi} = N_f^*/N_u$, degree of utilization in fire situation;

 N_f^* = design axial load in fire conditions;

 N_u = ultimate strength in compression, or tension, at a cross-section of an eccentrically loaded compression or tension member respectively;

 b_{\min}^{*} = smaller cross-sectional dimension of a rectangular column;

b_{w,min}= minimum width of the beam;

 a_{min} = the minimum required average distance from the reinforcement centroid to the nearest exposed surface;

The average effective distance is:

 $a_{m} = (\sum A_{si}a_{i}) / \sum A_{si} = 65.96$ [mm]

(6)

which is grater that the required a_{\min} .

 A_{si} = cross-sectional area of the reinforcement bar. a_i = distance from the reinforcement centroid to the nearest exposed surface.

5.2 The isotherm 500°C

All the equations are using the reduced section. This method considers that the concrete having a temperature higher that 500° C is not capable to bear compression.

The reduced cross-section dimensions are:

Figure 2. The reduced cross-section of the beam.

Figure 3. Steel temperature according to the charts of EN 1992-1-2:2006[2].

Using the design charts of EN 1992-1-2:2006[2], the depth of 500° C isotherm, t_{fi}, is recorded in table 5.

Table 5: The geometrical characteristics of the reduced cross-section

Conditions	t _{fi}	b _{fi}	h _{fi}	
	[mm]	[mm]	[mm]	
R60	21.3	257.3	578.7	
R90	29.9	240.2	570.1	
R120	35.1	229.8	564.9	

Steel temperature is determined using the charts of EN 1992-1-2:2006[2] and considering the reinforcement determined in the section 4.1. of this paper. The charts used are presented in figure 3 and the considered temperature values for each reinforcement bar are recorded in table 6.

Where:

 Θ - is the steel temperature;

 k_{Θ} – is the reduction factor for a strength or deformation property dependent on the material temperature Θ , according to EN 1992-1-2:2006[2];

 $f_{yd,fi,i}$ – is the reduced yield stress for each reinforcement bar.

For the average reduced design yield stress it may be considered the following expression:

$$f_{yd,fi} = \frac{\sum f_{yd,fi,i} \cdot A_{s,i}}{\sum A_{s,i}}$$
[MPa] (10)

The bending strength in fire conditions:

$$\mathbf{M}_{\mathrm{Rd, fire}} = \mathbf{A}_{\mathrm{s, prov}} \cdot \mathbf{f}_{\mathrm{yd, fi}} \cdot \left(\mathbf{d} - 0.5 \frac{\mathbf{A}_{\mathrm{s, prov}} \cdot \mathbf{f}_{\mathrm{yd, fi}}}{0.85 \cdot \mathbf{f}_{\mathrm{cd, fi}} \cdot \mathbf{b}_{\mathrm{fi}}} \right) \qquad [\mathrm{kN} \cdot \mathrm{m}]$$
(11)

	Reinforcement no.						
Variables	1&4	2&3	5&8	6&7			
R60							
Θ_{R60}	300	111.42	437.97	280.62			
k _{Θ,R60} [-]	1.00	1.00	0.9164	1.00			
f _{yd,fi,i,R60} [MPa]	500	500	458.2	500			
R90							
Θ_{R90}	431.41	189.76	565.84	383.36			
k _{ө,R90} [-]	0.93	1.00	0.576	1.00			
f _{yd,fi,i,R90} [MPa]	465	500	288	500			
R120							
Θ_{R120}	505	290	670	480			
k_{Ө,R120} [-]	0.76	1.00	0.30	0.824			
f _{yd,fi,i,R120} [MPa]	380	500	150	412			

Table 6: Steel temperature, reduction factor and reduced yield stress for each reinforcement bar

Table 7: Average reduced yield stress for steel and bending capacity

	f _{yd,fi} M _{Rd, fire} [MPa] [kN·m]		M _{Ed,fire} [kN∙m]
R60	489.55	485.22	
R90	438.25	440.75	119
R120	360.50	379.66	

6. Conclusions

The following conclusions can be drown from this study:

- 1. The nominal fire scenario is easy to use.
- 2. Tabulated data is an empirical method, which leads to unreliable results.
- 3. Performance based methods are more appropriate to capture the true behavior of a reinforced concrete element.
- 4. Develop a model that reflects the true fire scenario and the real behavior of reinforced concrete element exposed to fire.
- 5. The temperature rate or the fire intensity is an important element on a realistic analysis.
- 6. The real fire duration, must be considered.
- 7. The load-bearing characteristics should be evaluated.
- 8. The load variation- before, during and after fire- has to be established.
- 9. The methods of cooling (the materials that are use, such as: water, foam etc.) and the cooling rate may affect the load variation and chemically aggress the concrete element.
- 10. The thermal behavior analysis of the material, that takes in account the interaction between the steel reinforcement and concrete, at high temperature in a reinforced element, must be performed.
- 11. The mechanical characteristics of concrete and steel reinforcement at high temperature, such as compression and tension strength, modulus of elasticity, etc., may change.
- 12. Concrete thermal expansion and spalling affects the reinforced concrete element behavior, when exposed to fire.

7. References

- [1] Moss R., Brooker O., How to design concrete structures using Eurocode 2, Cap. 4. Beams, MPA, The Concrete Center, pp27, Dec. 2006;
- [2] SR EN 1992-1-2- Decembrie 2004- Eurocod 2: Proiectarea structurilor de beton. Partea1-2: Reguli generale. Calculul comportarii la foc.
- [3] AS 3600-2009, Australian Standard, Concrete Structures, Published by Standards Australia GPO Box 476, Sydney, NSW 2001, Australia, ISBN 0 7337 9347 9.
- [4] Harada K, Actual State of the Codes on Fire Design in Japan, Proceedings of the Workshop: Fire Design of Concrete Structures. What now? What next?, 2005, Pietro G. Gambarova, ISBN 88-88847-91-X, pp.13.
- [5] Leția, Catinca L., Calculul la foc al elementelor de beton armat. Culegere de probleme, Ediția a 2-a revăzută și completată, Editura U.T. PRESS, 2013, ISBN 978-973-662-923-5.
- [6] Purkiss, J. A., Fire safety engineering design of structures/ John A. Purkiss, Long-Yuan Li. Thrird edition, ISBN-13:978-1-4665-8547-8 (Hardback), pp 181-211.