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List of Symbols and Abbreviations 

Small Case Letters 

        {d(e)}: the displacement vector; 

{db}: the eigen vector corresponding to the eigenvalue �b; 

        {f(e)}: the vector of equivalent nodal forces; 

aj: a coefficient whose value depends on the deformation mode j. Therefore, aj=0 for j=1 and 

aj=1 for j=2…4; 

dfree: the vector of free displacements; 

          dk: the eigen vector corresponding to the eigen value �k associated with deformation mode k; 

dtotal: the vector of total displacements (i.e. of all the finite elements); 

f : the global vector of equivalent nodal forces; 

fred: the reduced global vector of equivalent nodal forces after the elimination of the columns 

corresponding to blocked degrees of freedom; 

j=1…4: the global deformation mode having the following meanings: j=1 is axial extension, 

j=2 is bending with respect the major axis, j=3 is bending with respect the minor axis and j=4 is 

torsion;  

k: the number of the deformation mode; 

m: the number of circumferential waves; 

n: the total number of deformation modes; 

nhw: the number of longitudinal half-waves; 

s: the coordinate with respect the cross section’s middle line in GBT for prismatic bars; 

t: the thickness of the cross section’s wall; 

u: the conical shell’s displacement on meridional direction;  

u: the displacement with respect the bar’s longitudinal axis in GBT for prismatic bars; 

uk(s): the warping component of the middle line displacement profile corresponding to 

deformation mode k; 

uk(�): the cross section warping displacement component of the conical shell’s circumference 

corresponding to deformation mode k; 

v: the conical shell’s displacement on circumferential direction; 

v: the displacement with respect the cross section’s middle line in GBT for prismatic bars; 

vk(s): the transverse component of the middle line displacement profile corresponding to 

deformation mode k; 
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vk(�): the cross section transverse displacement component of the conical shell’s circumference 

corresponding to deformation mode k; 

w: the conical shell’s displacement on normal direction; 

w: the displacement with respect the wall’s thickness in GBT for prismatic bars; 

wk(s): the flexural component of the middle line displacement profile corresponding to 

deformation mode k; 

wk(�): the cross section normal displacement component of the conical shell’s circumference 

corresponding to deformation mode k; 

x: the coordinate with respect the bar’s longitudinal axis in GBT for prismatic bars; 

x: the local meridional coordinate of the conical shell; 

xg: the global coordinate of the conical shell with respect the longitudinal axis; 

yg: the global coordinate of the conical shell with respect its cross section; 

z: the coordinate with respect the wall’s thickness in GBT for prismatic bars; 

z: the local normal coordinate of the conical shell; 

zg: the global coordinate of the conical shell with respect its cross section. 

Upper Case Letters 

X�j: the modal geometric matrix which takes into account the influence of the pre-buckling 

stresses associated with deformation mode j; 

B�: the modal stiffness matrix associated with cross section deformation; 

C�: the modal stiffness matrix associated with general warping; 

Cik
1 : the linear stiffness tensor associated with generalized primary warping;  

Cik
2 : the linear stiffness tensor associated with generalized secondary warping; 

D�: the modal stiffness matrix associated with torsion; 

Dik
1 : the linear stiffness tensor associated with generalized torsion; 

Dik
2 : the linear stiffness tensor associated with generalized flexural Poisson’s effect; 

U�: the global transformation matrix; 

Wj
0: the vector of the pre-buckling stress resultants associated with deformation mode j. 

X�ik
� : the geometrical stiffness tensor associated with normal stresses; 

Xjik
�x : the geometrical stiffness tensor which takes into account the second order effects of the 

pre-buckling meridional stresses associated with deformation mode j; 

Xjik
��: the geometrical stiffness tensor which takes into account the second order effects of the 

pre-buckling hoop stresses associated with deformation mode j; 
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Xjik
� : the geometrical stiffness tensor which takes into account the second order effects of the 

pre-buckling shear stresses associated with deformation mode j; 

[G(e)]: the finite element geometric matrix; 

[K(e)]: the finite element stiffness matrix; 

�W: the variation of strain energy; 

B: the bending component; 

B: the stiffness matrix associated with cross section deformation; 

Bik: the linear stiffness tensor associated with generalized transversal bending; 

C: the stiffness matrix associated with general warping; 

Cik: the linear stiffness tensor associated with generalized warping; 

Cjj: the cross section’s stiffness associated with deformation mode j; 

D: the stiffness matrix associated with torsion; 

E: the Young modulus of elasticity; 

Fik: the linear stiffness tensor associated with cross section distorsion of the conical shell, in the 

first order analysis; 

G: the global geometric matrix; 

G: the transversal modulus of elasticity; 

Gik: the linear stiffness tensor associated with cross section distorsion of the conical shell; 

Gred: the reduced global stiffness matrix, respectively geometric matrix after the elimination of 

the lines and columns corresponding to blocked degrees of freedom; 

Hik: the linear stiffness tensor associated with cross section distorsion of the conical shell; 

K: the global stiffness matrix; 

Kred: the reduced global stiffness matrix after the elimination of the lines and columns 

corresponding to blocked degrees of freedom; 

L: the length of the conical shell; 

L: the matrix of localization which is used to transfer the degrees of freedom from finite element 

level to global level; 

Le: the length of the finite element; 

M: the membrane component; 

UI: matrix resulted from the 1st GBT eigen problem;  

UII: matrix resulted from the 2nd GBT eigen problem; 

UIII: matrix resulted from the 3rd GBT eigen problem; 

Wj,x: the resultant of the pre-buckling shear stresses associated with mode j; 

Wj: the resultant of the pre-buckling normal stresses associated with mode j; 
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Xj: the geometric matrix which takes into account the influence of the pre-buckling stresses 

associated with deformation mode j.  

Greek Letters 

 �
xs
B.L: the linear bending shear strain component for prismatic cross sections; 

�
xs
M : the shear membrane strain for prismatic cross sections;  

 �
xs
M.�L: the non-linear membrane shear strain component for prismatic cross sections; 

�
x�
M.L: the linear membrane shear strain of conical shells; 

�
x�
M.�L: the non-linear membrane shear strain of conical shells; 

�ss
B.L: the linear bending strain component along the cross section’s middle line; 

�ss
M: the transverse membrane strain for prismatic cross sections;  

�xx
B.L: the linear bending strain component along the member’s longitudinal axis; 

�xx
M.L: the linear membrane meridional strain of conical shells; 

�xx
M.L: the linear membrane strain component along the member’s longitudinal axis; 

�xx
M.�L: the non-linear membrane meridional strain of conical shells; 

�xx
M.�L: the non-linear membrane strain component along the member’s longitudinal axis; 

���
M.L: the linear membrane hoop strain of conical shells; 

���
M.�L: the non-linear membrane hoop strain of conical shells; 

�ss
B.L: the linear bending normal stress component along the cross section’s middle line; 

�xx
0 : the pre-buckling normal meridional stresses; 

�xx
0 : the pre-buckling normal stress along the member’s longitudinal axis; 

�xx
B.L: the linear bending normal stress component along the member’s longitudinal axis; 

�xx
M.L: the linear membrane normal stress component along the member’s longitudinal axis; 

���
0 : the pre-buckling normal hoop stresses; 

�xs
0 : the pre-buckling shear stress for members with prismatic cross sections; 

�xs
B.L: the linear bending shear stress component for prismatic cross sections;  

�x�
0 : the pre-buckling shear stresses; 

{�B}: the conical shell’s bending strains; 

{�M}: the conical shell’s membrane strains; 

          {�}: the vector of curvature variation with respect the middle surface; 

	: the angle of the semi-vertex of the conical shell; 

�: the local circumferential coordinate of the conical shell; 

�: the load parameter; 
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�b: the eigenvalue corresponding to eigen vector {db}; 

�c: the lowest eigenvalue called the critical buckling coefficient;  

�k: the eigenvalues corresponding to deformation mode k; 


: Poisson’s ratio; 

�c: the critical normal stress; 

�c: the critical shear stress;  

�: the vector of modal amplitude functions defined along the bar’s longitudinal axis; 

�k(x): the modal amplitude function defined with respect the bar’s longitudinal axis; 

Abbreviations 

cFSM: constrained Finite Strip Method; 

DOF: degree of freedom; 

DSM: Direct Strength Method; 

FE: Finite Element; 

FEM: Finite Element Method; 

FSM: Finite Strip Method; 

GBT: Generalized Beam Theory; 

SFEA: Shell Finite Element Analysis; 

TWB: thin walled bars; 

TWS: thin walled structures. 
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Chapter I 
Introduction 

1.1. The Context of Research 

Steel bars are often divided into two categories. The first category is represented by either hot-

rolled or welded profiles. The second category which is less known, but with an increased importance, 

is represented by cold formed profiles. These structural members may come in the form of corrugated 

sheets, strips or thin walled bars and are manufactured by industrial processes which involve cold 

pressing, bending or embossing. The thickness of thin walled bars range, in general, between 0.378 

mm and 6.35 mm [1].  

Thin walled structures (TWS) are widely used in civil and mechanical engineering, from 

industrial buildings, showrooms, storage facilities, bridges to vechicle components, engines, naval 

and aerospace industry. Generally, the structural members formed by thin walled bars have the 

following advantages: 

(i) Unlike thick hot rolled profiles, thin walled bars may be used for relatively small loads and/or 

spans.  

(ii) Cross sections with unusual shapes may be manufactured economically using cold formed 

procedures, thus obtaining a favorable strength-to-weight ratio.  

(iii) Thin walled structures may be manufactured as embbedable elements allowing compact 

packing and an easier transport.  

(iv) Load-carrying panels may be used for floors, roofs and walls. In other conditions, these 

panels may provide closed spaces for electric wires and pipes.  

(v) Load-carrying panels do not only take loads normal to their surface, but can also act as 

diafragms to take the in-plane loads, if the panels are properly connected between them and the main 

structural elements.  

(vi) The large variety of cross section shapes results in various architectural configurations. 

(vii) The slenderness of thin walled bars provides large reductions in building and material 

costs.  

Besides thin walled bars (TWB) with prismatic flat-walled cross sections and corrugated sheets, 

in the same category enter also TWB with circular cross sections. The last one may appear as 

cylindrical bars or conical structures. Conical structures are often used as structural columns, cooling 

towers, pillars for oil platforms, pillars for wind turbines and in the aerospace industry. Also, truncated 

conical shells are used as transition elements between cylindrical bars having different diameters. 
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Conical structures are extremily efficient when it comes to strength and stability. Their most important 

property is the fact that the membrane stiffness is a few orders higher than the bending stiffness. Even 

though conical and cylindrical shells are used in many fields of engineering, the buckling of these 

structures is less studied than in case of prismatic TWB.  

Even though the bearing capacity of TWB is high despite the low thickness of their walls, this 

type of structural elements are prone to buckling and excessive vibrations. The calculations to 

estimate the bearing capacity, the stability and the vibration behavior of TWB are one of the most 

complex structural analysis problems. Therefore, design codes are developed based on simplified, 

approximate and very often empirical formulae, which often lead to unjustified costs and a waste of 

material. Even nowadays, the design of some thin walled structures extensively used in current 

practice is exclusively based on experimental procedures (for example, TWB with variable cross 

sections or perforations).   

Due to the slenderness of the walls, the collapse of compressed TWB usually takes the form of 

a coupled instability. The study of this complex phenomenon begins, generally, with the 

decomposition of the general buckling into pure deformation modes as follows (see Figure 1.1): 

(i) Global deformation modes, where the cross section has a rigid body behavior; 

(ii) Distortional deformation modes, where relative displacements of the corners of the section 

occur in the transversal plane, 

(iii) Local deformation modes, where local buckling of the walls occur. 
 

 
Figure 1.1: Pure buckling modes for thin walled bars [2]. 

 
Every pure buckling mode is represented by its own post-critical behavior: 

(i) Local buckling has considerable post-critical capacity; 

(ii) Global buckling doesn’t have significant post-critical capacity; 

(iii) Distortional buckling is an intermediary case. 

The coupling of the GDL (global, distortional, local) deformation modes is often seen in TWB 

columns and beams. Therefore the determination of the degree of participation of the pure GDL 

modes in the general buckling mode (modal decomposition) is an important step in the determination 
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of the design bearing capacity of the structural member. But this is a difficult problem. For this reason, 

buckling analysis methods for thin walled structures are still being developed. 

1.2. The Objectives of the Thesis 

The purpose of the following study is to develop new numerical analysis methods for thin 

walled structures which are superior to the existent ones. The study focuses on the buckling behavior 

of circular cylindrical and conical shells. Also, the study extends the methods introduced by Nedelcu 

[3], [4]. The main objective is to create a Generalized Beam Theory (GBT) based Finite Element (FE) 

formulation for the analysis of circular cylindrical and conical shells. In the presented work, the 

proposed formulation was developed to handle 1st order and linear buckling analyses with various 

classic bar boundary conditions and various loading, namely axial compression, torsion and bending.  

1.3. The Methodology of the Scientific Research 

In order to correctly evaluate the buckling behavior of cylindrical and conical shells it is 

necessary not only to understand the buckling process of this type of structures, but also the GBT 

adapted for them. Therefore, the first step was the literature review and the study of the GBT 

formulation for thin walled bars with prismatic cross section, more exactly the original GBT 

developed by Schardt [5]. This step was followed by the literature review and study of the GBT 

extension to thin walled bars with circular cross section and with variable cross section. Once this 

task was completed, , the next step was the literature review of the GBT-based FE formulations, 

developed until the present work only for prismatic members. 

After the literature review phase, the following step was the adaptation of the GBT-based FE 

formulation to circular cylindrical and conical shells for the following load cases: axial compression 

without stress concentrations, axial compression with stress concentrations, torsion and bending. The 

analyses were performed using Matlab [6]. The particularity of each load case is described in detail 

in the following chapters. 

In order to validate the proposed formulations, several Abaqus [7] models were created and 

analysed using S4 rectangular shell finite elements. The validation of the proposed formulation 

consisted in a comparison with the results determined by shell finite element analyses (SFEA) in 

Abaqus. The proposed formulation was considered valid if the differences between the results 

obtained by the two analysis procedures did not exceed 5%.  
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1.4. The Structure of the Thesis 

The following thesis is structured into 8 chapters. The content of the chapters is summarized 

below, as follows: 

Chapter I: Introduction 

The first chapter provides a general presentation of the thesis by including it in the research 

thematic context. Also, the objectives and the research methodology are stated.  

Chapter II: Literature Review 

The following chapter briefly presents the important studies from the area of thin walled 

structures and their buckling analysis methods. In case of the buckling analysis methods the main 

focus is on GBT by presenting the most related studies which are available up until this moment.  

Chapter III: Generalized Beam Theory 

The chapter presents general aspects regarding the Generalized Beam Theory for prismatic bars 

in order to familiarize the reader with the method. Then, the Generalized Beam Theory extension for 

circular conical shells is described in detail. 

Chapter IV: The GBT-based Finite Element Formulation  

The following chapter describes the GBT-based Finite Element formulation adapted for circular 

cylindrical and conical shells. The chapter describes the algorithm of the GBT-based FE formulation 

for the first order analysis and for the linear buckling analysis of these structures.  

Chapter V: Axially Compressed Conical Shells  

The chapter presents the case of axially compressed conical shells. The case study was divided 

into two main categories depending on the pre-buckling stress configurations of the conical shells 

from the analysed numerical examples: (i) conical shells without stress concentrations and (ii) conical 

shells with stress concentrations. Also, the numerical examples were also divided in other two cases 

depending on the wall thickness: (i) conical shells with constant thickness and (ii) conical shells with 

variable thickness. The chapter presents the differences between the results determined by the two 

analysis procedures, the buckling modes obtained from SFEA and the graphs of the modal amplitude 

functions resulted from the proposed GBT formulation. In the case of conical shells with pre-buckling 

stress concentrations the precision of the GBT-based FE formulation is analysed by meshing the GBT 

models with finite elements having constant and variable length. Thus, it is shown how to capture 

more precisely the stress concentrations occurring at the conical shell end sections.  

Chapter VI: Conical Shells under Torsion 

The chapter describes the case of conical shells under torsion, which is completely different 

from the case of axially compressed conical shells. The case studies were divided into two main 

categories depending on the wall thickness: (i) conical shells with constant thickness and (ii) conical 
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shells with variable thickness. Each case study mentioned previously was also divided into three other 

cases depending on the length of the analysed structure: (i) short conical shells, (ii) medium conical 

shells and (iii) long conical shells. As in the previous chapter, the results determined by SFEA are 

compared to the ones determined by the proposed formulation and the buckling modes resulted from 

SFEA and the graphs of the modal amplitude functions resulted from the GBT-based FE formulation 

are illustrated. 

Chapter VII: Conical Shells under Bending 

Chapter VII presents the case of conical shells under bending, a case study which was 

approached in a different manner compared to the previous load cases due to the complexity of the 

buckling process. The numerical examples were divided into two categories depending on the length 

of the analysed structures: (i) short conical shells and (ii) long conical shells. The chapter describes 

the first order analysis and, respectively the buckling analysis by presenting the graphs of the stresses 

that occur in this load case, the buckling modes resulted from SFEA and from the proposed 

formulation and the graphs of the modal amplitude functions. As in the previous two load cases, the 

results determined by the two buckling analysis methods were compared.  

Chapter VIII: Conclusions 

The last chapter presents the conclusions regarding the research developed for the thesis, the 

personal contributions and the future research projects. 

At the end of the thesis, Annex I presents in detail the analytical expressions of the cross section 

stiffness matrices and the References presents all the scientific papers which contributed to the 

elaboration of the following thesis.    
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Chapter II 
Literature Review 

2.1. A Short History of the Research of Thin-walled Structures 

Structural elements made of cold-formed steel were first used in civil engineering in 1850s in 

U.S.A. and U.K., but were only used at large scale starting from the 1940s in U.S.A. [8].  

In 1930s, in U.S.A., the development of structural elements made of cold-formed steel was 

difficult due to the lack of specific codes. The design codes from that period didn’t have technical 

guidelines for thin-walled structures. Because of the necessity of special technical conditions for TWB 

and due to the lack of previous studies, in 1939, the AISI committee (American Iron and Steel 

Institute) for research and technology in civil engineering financed a research project at Cornell 

University to study the behavior of TWB. The research conducted at Cornell University by professor 

George Winter and his assistants resulted in the development of the following TWB analysis methods: 

effective width for stiffened compressed members, lateral buckling of beams, bending buckling of 

columns, bending and twisting buckling of eccentrically and axially loaded columns in elastic and 

inelastic domain, the deformation of the web of TWB, the assymetrical bending of beams and the 

design of welded and bolted connections. Also at Cornell University, starting from the 1960s, Teoman 

Pekoz included the following aspects related to TWB analysis: the effect of residual stresses on 

columns, the distortional buckling of columns and beams, the design of rack structures, the 

probabilistic analysis of the bearing capacity of structural members and the design of frames made of 

TWBs [1].  

Weng and Pekoz [9] studied residual stresses in TWBs using experimental methods. The results 

of the experiments provide the understanding of the distribution and intensity of residual stresses in 

TWB which are different from the residual stresses found in bars with hot rolled profiles. Based on 

the experimental results, the idealized distribution of residual stresses in TWB with “C” section was 

traced. Also, the authors described in [9] the propagation of the yielding plateau in an axially 

compressed TWB by formulating an equation which describes the degree of extension of the yielding 

plateau in the respective member.    

Mulligan and Pekoz [10] formulated an efficient method to analyse the effects of local buckling 

in thin-walled columns and beams having one symmetry axis. The post-critical capacity of the cross-

section was analysed by the effective width method. The authors developed one formula to determine 

the effective width which represents the behavior of the cross-section subjected to service loads and 

to analyse the bearing capacity of stiffened structural members subjected to uniform compression. 
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Also, the effective width method was proposed for the analysis of stiffened structural members which 

are eccentrically compressed. The validation of the method was done by comparing the results 

obtained through calculations with results obtained through experiments on cold-formed steel 

columns with “C” section.  

Miller and Pekoz [11] studied through experimental methods the effects of eccentricity on the 

bearing capacity of the thin-walled columns subjected to axial forces. The experiments were 

conducted on 48 long columns with “C” section. The experimental results were compared to the 

bearing capacities for flexural buckling and flexural-torsional buckling determined using the AISI 

design code from 1986. Local buckling was analysed using the Effective Width Method. The same 

paper proposes an analysis method of buckling with respect the minor axis of the cross-section and 

of the interaction between the force and the lateral displacement of eccentrically loaded columns with 

initial imperfections.  

Kalyanaraman and Pekoz [12] conducted an analytical study on the elastic and inelastic local 

buckling and on the post-critical behavior of unstiffened TWB subjected to compression. The authors 

formulated an equation for the elastic local buckling of the compressed unstiffened TWB. The 

equation starts from the solution of the small displacement equation of plates subjected to membrane 

stresses which was approximated by a sinusoidal function. In the post-critical study of compressed 

unstiffened TWB, the Von Karman 4th degree differential equations were solved. These equations 

describe the small displacements of the plates with out-of-plane imperfections. The differential 

equations were solved by using the sinusoidal function approximation. The solution of the elastic and 

inelastic local buckling analysis and of the post-critical behavior analysis obtained by the proposed 

analytical study were compared with the experimental results.  

Schafer et al. [13] provided an overview of computational modeling for elastic buckling and 

non-linear elastic analysis for cold formed steel elements. The authors focus on recent research and 

experiences with computational modeling of cold formed steel members conducted with a research 

group at Johns Hopkins University. The paper describes the use of semi-analytical Finite Strip Method 

and the collapse modeling using shell finite elements. The authors compared the solutions resulted 

from Finite Strip Analysis and Shell Finite Element Analysis and emphasized the importance of 

imperfections, residual stresses, material modeling, boundary conditions, element choice, 

discretization and solution controls in collapse modeling of cold formed steel structural elements.    

Besides the studies conducted at Cornell University, there were other research projects of TWBs 

made by private companies and other universities in the U.S.A. The results obtained have been 

presented at national and international conferences and in journals of different engineering 

organizations. Since 1975, the ASCE (American Society of Civil Engineers) committee for thin-
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walled structures had conducted 38 research projects and released 1300 scientific papers entailed in 

18 categories. These documents are important sources for researchers and engineers which design 

thin-walled structures. In 1990, Missouri-Rolla University opened the Center for Thin-walled 

Structures where 48 research projects were conducted. Researches on the behavior of TWB were also 

conducted in other parts of the world where there are available design codes for these type of 

members. Some of these design codes are based on the “Limit States Design” concept. In 1993, the 

European Commettee for Standardization released Part 1-3 of Eurocode 3 [2] which is designated for 

the design of thin-walled structures [1].   

Hancock et al. [14] proposed strength design curves for thin-walled cross-sections subjected to 

distortional buckling. The design curves were based on experimental data. Lucas et al. [15] proposed 

a non-linear elasto-plastic finite element model which is able to predict the behavior of purlin sheeting 

systems without the need of experimental input or simplifying assumptions. The proposed model 

incorporates both the sheeting and the purlin. The model takes into account the cross-sectional 

distortion of the purlin, the flexural and membrane restraining effects of the sheeting and the failure 

of the purlin by local buckling or yielding. The proposed model was validated by comparing the 

results with experimental data.  

Key and Hancock [16] conducted an experimental programme at the University of Sydney, 

Australia, where they investigated the behavior of columns with square hollow cross sections. The 

tests were performed on stub, pinned columns and detailed measurments of the yield stress and 

residual stress were recorded. After the experimental tests the columns were investigated by large 

deflection elastic-plastic finite strip analysis including also the measured distribution of the yield 

stress and residual stress. The analysis took into account the plate geometric imperfections, the 

variation of yelding stress along the cross section, the stress – strain properties of the material and the 

patterns of the residual stresses produced by the cold forming process. The influence of the measured 

residual stress components on the ultimate load and the behavior of the square hollow cross section 

columns was demonstrated by comparing the analytical results with the experimental results.  

Young and Rasmussen [17] investigated the behavior of cold-formed plain and lipped channel 

columns under compression with fixed and pinned boundary conditions. The authors showed, by 

means of experiments, that local buckling does not induce general bending in fixed-ended singly 

symmetric columns as it does in the case of pinned singly symmetric columns. Therefore, the authors 

demonstrated that local buckling has different effects on fixed ended and pinned singly symmetric 

columns. The experiments were performed on plain and lipped channel columns made of high 

strength structural steel which were break-pressed. The samples had four different cross-section 

geometries and lengths. The experimental tests involved pure local buckling, distortional buckling, 
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general flexural buckling and torsional-flexural buckling. The effects of local buckling depending on 

the boundary conditions were investigated by comparing strengths, load shortening, load – deflection 

curves and longitudinal profiles of buckling deformations.  

Blum and Rasmussen [18] carried out an experimental program on a series of portal frame 

systems composed of back-to-back channels for the columns and rafters. The authors discovered that, 

by changing the knee brace and knee brace-to-column connection bracket, the buckling capacity of 

the column was significantly affected. This aspect was not captured in design calculations. The 

column’s buckling capacity must be accurately calculated to predict correctly the frame’s behavior 

and the ultimate buckling loads for design purposes. Therefore, the authors developed an energy 

method approach to calculate the buckling load of a column with an intermediate elastic torsional 

restraint. After validating the proposed method by comparing the results with experimental data, the 

authors observed that the energy method approach estimated the experimental column buckling load 

by 6%.  

Young and Ellobody [19] investigated the behavior and design of cold-formed unequal angle 

columns using non-linear finite element analysis. The finite element analysis was performed on end 

fixed columns having different lengths. The measured initial and global imperfections and also the 

material properties of the specimens were included in the models. The authors showed that the finite 

element model closely predicted the ultimate experimental loads and the behavior of cold-formed 

steel unequal angle columns. Using the finite element models the authors performed extensive 

parametric studies of cross-section geometries. The authors compared the results of the parametric 

study with the design strengths determined by the North American Specification for cold-formed steel 

structures and demonstrated that the current design rules were generally unconservative for short and 

medium length columns with unequal angles. Therefore, the authors proposed design rules for cold-

formed steel columns with unequal angles.    

Davies et al. [20] conducted a study on the design of perforated cold-formed steel cross-sections 

under axial load and bending. The purpose of the study was to find analytical methods to design these 

types of members. The study consisted in experimental tests on columns in which the load position 

varies along the axis of symmetry. The experimental results were analysed using FEM and a version 

of GBT. Davies showed that GBT could be modified to take into account perforations such that the 

lower bound results give a sufficiently accurate design curve for columns. The design curve obtained 

from the analysis takes into account local, distortional and global buckling. Therefore, extensive 

testing of perforated cold-formed steel bars is unnecessary.  

Ghersi et al. [21] analysed the experimental results of double channel cold-formed beams under 

local and lateral torsional buckling in order to identify the range definition of the buckling modes 
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which influence the ultimate behavior of these type of beams. The experimental results were 

compared to results obtained by Eurocode 3 [2] and AISI [22] design approaches and the agreement 

was satisfactory. The authors also established the coupled instability range by means of Eurocode 3 

formulations. The proposed equations provide useful indications for designers because they relate to 

the main geometrical parameters of the beam.  

Loughlan [23] presented the weakening effects of local buckling on the compressive load 

carrying capacity of thin-walled cold-formed cross-sections. These effects were studied on pinned 

compression members with different cross-section shapes. The theoretical results were determined by 

a differential equation which describes approximatively the overall bending behavior of locally 

buckled compression members. In the theoretical approach both local and general imperfections were 

taken into account, showing that the effect of these imperfections was the decrease of the ultimate 

compressive carrying capacity of cold-formed sections. Experimental tests were carried on 

concentrically loaded pinned I-section struts and columns and the results were compared to the ones 

obtained by the theoretical approach. The author showed that the theoretical results were in good 

agreement with the experimental results. The author also compared the provisions regarding the 

design of cold-formed compression members of the U.K. Code of Practice with the ones of the 

American Specification. The author showed that the American design procedure gives more 

conservatives estimates of collapse loads regarding I-section struts and columns. 

Tomà et al. [24] conducted a survey on the fastening possibilities of cold-formed steel structures 

such as mechanical fasteners, welding and adhesive bonding. The authors emphasized in their study 

that the selection of the fastening type should not be based only on structural requierments, but also 

on non-structural requirements such as economic aspects (i.e. total number of necessary fastenings, 

skill required, the ability to be dismantled, design life and installation costs), durability, watertightness 

and aesthetics. The study was based on statistical evaluations leading to improved versions of existing 

design rules and an uniform partial safety factor for bearing capacity.  

Madeira et al. [25] developed an optimal design method for cold-formed steel columns. The 

objectives of the study were to maximize the local buckling capacity and to maximize the distortional 

buckling capacity. The elastic local, distortional and global buckling loads of the columns were 

determined using the Finite Strip Method and their bearing capacities were determined by the Direct 

Strength Method. The main focus of the design problem was the angle of orientation of the cross-

section walls. In the numerical examples presented in reference [25], both symmetrical and non-

symmetrical cross-sections were considered.  

Zagari et al. [26] presented an imperfection sensitivity analysis of thin-walled cold-formed steel 

members in compression for perforated steel pallet racks having different lengths. The analysis 
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method applied in this case study is a finite element implementation of the Koiter method coupled 

with a Monte Carlo simulation. The analysis is also based on an extensive experimental study carried 

at “Politechnica” University of Timisoara, which showed that there is a strong relation between the 

buckling mode and a significant reduction of the load bearing capacity. The limit load is evaluated 

statistically by Koiter’s method while thousands of geometrical imperfections are analysed. Thus, the 

worst combination of geometrical imperfections is determined and the erosion of the critical buckling 

load due to imperfections and modal interactions is evaluated.  

Bertocci et al. [27] conducted an extensive experimental study on centric and eccentric 

compressive behavior of thin-walled steel uprights of pallet rack systems. The cold-formed steel 

profiles analysed by the authors are perforated through their whole length and have open, mono-

symmetric cross-sections. Besides experimental studies, the pallet rack systems also went through 

finite element simulations which included geometrical and material non-linearities. The experimental 

and numerical results were compared to design code prescriptions. The authors remarked that the 

experimental results show non-symmetrical behavior about the cross-section’s weak axis and non-

linear, convex bending-bending interaction, unlike the design codes which are safety preserving with 

an average underestimation of the strength of about 10%.   

Tondini and Morbioli [28] determined the flexural bearing capacity of cold-formed laterally 

restrained steel rectangular hollow flange beams by experimental-numerical methods. The results of 

the experimental study consisted in material caracterisation and tests on full-scale specimens. The 

numerical analysis was performed to develop a model capable of reproducing the experimental 

results. Also, numerical analyses were used to expand the available theory over a wider slenderness 

range by parametric studies.  

Basaglia et al. [29] studied the buckling, post-buckling, collapse and design of cold-formed 

steel beams under non-uniform bending caused by transverse loadings which act away from the shear 

centre. This means that the load is applied either at the top or bottom flange. The results of the study 

consisted in critical load factors determined by Generalized Beam Theory (GBT), plastic collapse 

load factor determined by ANSYS with first order elastic-plastic Shell Finite Element Analysis 

(SFEA), ultimate load factors determined by geometrically non-linear elastic-plastic SFEA, also with 

ANSYS and ultimate load predictions determined with two Direct Strength Method (DSM) design 

approaches. The values of the ultimate strengths were compared to the values determined using Direct 

Strength Method (DSM) curves. The authors remarked that the location of the transverse load’s point 

of application influences significantly the beam’s buckling and non-linear behavior. Thus, this 

influence should be taken into account when designing cold-formed beams subjected to transverse 

loads.  
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Sadovský and Krivá�ek [30] studied the ultimate buckling strength of axially loaded cold-

formed lipped channel columns. In the numerical examples variations of boundary conditions and 

eccentricities of the loads were considered. The ultimate strength was determined by geometrical and 

material non-linear Finite Element (FE) analyses. The geometrical imperfections were approximated 

as eigenmodes of the linearized buckling problem. For each case study the worst eigenmode 

imperfection was determined. The authors showed the effects of the boundary conditions and load 

eccentricities on the ultimate buckling strength of the cold-formed lipped channel columns by 

determining the lowest collapse loads corresponding to the eigenmode imperfections.  

Bonada et al. [31] presented three methodologies to predict the load carrying capacity of cold-

formed steel rack columns by using non-linear Finite Element Analysis (FEA). The lengths of the 

columns were chosen such that the failure occurs due to distortional buckling. The authors showed 

that, for the chosen range of lengths, the accurate prediction of the ultimate load is more complex than 

in the case of lengths where failure occurs due to local or global buckling. The columns were analysed 

using three different methodologies. The first methodology uses the critical buckling mode. The 

second methodology used for the analysis is iterative and uses the buckling mode that leads to the 

lowest ultimate load. The first two methodologies use the Finite Element Method. The third 

methodology uses the GBT-based Finite Element formulation to determine the modal participation of 

the buckling mode resulted from FEM and to generate a particular combined geometric imperfection. 

The authors validated the predicted loads by comparing the results determined by the three 

methodologies mentioned previously with experimental results.  

Vraný [32] studied the effect of loading on the rotational restraint of cold-formed steel purlins. 

The author proposed an analytical model based on the study of redistribution of contact forces. 

Different case studies of purlins having “Z” and “C” cross-sections were analysed, demonstrating that 

the effect of loading on the stiffness is different for each case. For example, for C-purlins under gravity 

loads, the loading does not affect the stiffness, while for C-purlins under uplifting loads, the loading 

reduces the stiffness. The model results were compared to results determined by numerical 

simulations.   

Kasperska et al. [33] developed an optimal design of selected channel cross-section shapes 

subjected to bending moment. The problem of optimization was a bicriteria one, in which the cross-

section area is the first objective function and the deflection of the beam is the second objective 

function. The selected design variables were the cross-section geometric parameters. The set of 

constraints consists in global and local stability conditions, strength condition and technological and 

constructional requierments in the form of geometric relations. The optimization problem was 

formulated and solved by the Pareto concept of optimality and preference functions.  
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Dubina and Zaharia [34] conducted an experimental research for the evaluation of the semi-

rigid behavior of bolted connections used in cold-formed steel plane truss joints. The trusses were 

created in the laboratory of the Department of Steel Construction and Structural Mechanics (CMMC: 

Construc�ii Metalice �i Mecanica Construc�iilor) of the “Politechnica” University of Timisoara. The 

semi-rigid character of the joints was established according to Eurocode 3 provisions and from the 

experimental values of the resistant moment and initial stiffness of the joints. To demonstrate the 

improvement of the load bearing capacity compared to the classical approach, a numerical analysis 

was performed on the cold-formed steel truss in which the semi-rigid behavior was taken into account 

by using the experimental results. The authors proposed a semi-analytical method combined with 

FEM and calibrated with experimental results for the parametric study of the local behavior of semi-

rigid joints.  

The same authors [35] had an experimental research on evaluating the real behavior of bolted 

joints in cold-formed steel trusses. The authors proposed a theoretical model of joint stiffness by 

performing tests on single lap joints and on truss sub-assemblies. Also the authors developed a 

formula to evaluate the joint stiffness and from which the buckling length of web members was further 

determined. The formula was validated through an experimental test performed on a full-scale cold-

formed steel truss.  

Ungureanu et al. [36] proposed a new solution for cold-formed steel beams of corrugated web 

and built-up section for flanges in which the beam is composed by a web of trapezoidal cold-formed 

steel sheet and the flanges of built-up cold-formed steel members such as back-to-back lipped channel 

cross-sections or angles with turn lips. The flanges and the web can be connected by self-drilling 

screws or by spot welding. In order to validate and optimize the proposed technical solution, a large 

experimental program was carried at CEMSIG Research Centre (http://cemsig.ct.upt.ro) of 

“Politechnica” University of Timi�oara, where five beams with corrugated webs having different self-

drilling screws and shear panels arrangement patterns were tested.  

Dubina [37] showed how test results could be used to solve and validate complex problems of 

cold-formed steel structures analysis and design. The author presented in [37] the following problems 

of analysis and/or design of cold-formed steel structures: the calibration of an imperfection factor 	 

for interactive buckling curves, the experimental calibration of stiffness of bolted joins in cold-formed 

steel trusses, the design assisted by testing of pitched roof cold-formed steel portal frames considering 

the actual behavior of joints and the design assisted by testing of seismic resistant cold-formed steel 

framed houses. The author remarked that without experimental tests the solutions of the problems 

presented in the paper would be difficult to determine.   
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Dubina and Ungureanu [38] assumed that purlins are semi-continous at the junction between 

single and lapped sections based on experimental evidence. The authors proposed to take into account 

the web crippling action at the edge of the lapped section in interaction with the bending moment. 

Based on that assumption, the authors developed design formulae for strength and stability checking 

for different types of global and local stress interactions. The formulae were validated by comparing 

the results with experimental and numerical data.     

In the last decades many researchers demonstrated through experimental and numerical analysis 

that, generally, the design codes for thin-walled structures significantly underestimate their buckling 

resistance (references needed). Also, the determination of effective widths is a time-consuming task 

for structural engineers. This motivates the development of new methods of analysis which are more 

efficient and which are able to provide accurate results regarding the buckling behavior of TWB.  

2.2. Studies of Thin-walled Bars with Circular Cross-section 

The stability of cylindrical and conical structures has been studied from analytical and 

experimental point of view since the beginning of the 20th century. First, small displacement theory 

was used to obtain the solutions of the bifurcation of shell-type structures [39]. However, the 

experimental results showed that cylindrical structures buckle at loads with values lower than the ones 

predicted by the small displacement theory. Donnel [40] proposed a non-linear theory for circular 

cylindrical structures which uses the thin plate hypothesis. Depending on which of the non-linear 

components of the deformations are taken into account, other large displacement theories were 

proposed by Sanders [41], Flügge [42] and Novozhilov [43]. The Love – Timoshenko non-linear 

theory [44] is used in the numerical studies presented in the following thesis because, compared to 

Donnel or Sanders theory, it contains additional non-linear components. Goldfeld summarized the 

kinematic relationships of the three theories mentioned previously [45].  

The following sections present examples of numerical, analytical and experimental studies 

related to cylindrical and conical shells.  

2.2.1. Studies on Cylindrical Shells 

Von Karman and Tsien [46] conducted an important study of the stability of circular cylindrical 

structures under axial loads using Donnel’s non-linear theory. In this study the authors showed that 

the intensity of the load applied to cylindrical structures decreases as the values of the displacement 

increase. Later, Donnel and Wan [47] showed that the imperfections were the cause of the large 

differences between the analytical and experimental results of the stability analysis of cylindrical 

structures.   
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Arbocz and Hol [48] present a stochastic method which uses first order, second moment ? 

analysis to evaluate the stability of isotropic, orthotropic and anisotropic nominally? circular 

cylindrical shells subjected to axial compression, external pressure and/or torsion. The cylindrical 

shells studied in the paper possess general non-symmetric random initial imperfections. The initial 

imperfections resulted from measurements and are represented as Fourier series. The Fourier 

coefficients are then used to construct the second-order statistical properties. The buckling loads were 

determined by standard computer codes which included a rigorous satisfaction of the specified 

boundary conditions. The authors showed that the stochastic approach provides a way to combine the 

latest theoretical findings with the practical experience in an optimal manner by using advanced 

computational facilities.  

Winterstetter and Schmidt [49] conducted a comprehensive experimental and numerical study 

of cylindrical shells under combined loading. The authors provided rules for the numerical simulation 

of the realistic buckling behavior of cylindrical shells by means of substitute geometric imperfections.  

Rahman and Jansen [50] developed a finite element formulation of Koiter’s initial post-

buckling theory using a multi-mode approach. The authors illustrated the capability of the 

implementation for buckling analysis of shell structures including modal interaction. The case study 

consisted in the post-buckling analysis of a composite cylindrical shell under compression which 

included the non-linear pre-buckling state. The analysis was carried out using a small number of 

representative modes.  

Singh et al. [51] investigated the influence of meridional curvature on the post-buckling 

behavior of angle-ply laminated cylindrical shells under axial compression, external pressure, torsion 

and uniform temperature increase by using a semi-analytical finite element approach. The non-linear 

governing equations were solved by the iterative method Newton-Raphson coupled with the adaptive 

displacement control method. The variation of ply angle and ply thickness along the meridional 

direction were considered in the analysis. According to the results, the imperfection sensitivity of 

cylindrical shells with negative Gaussian curvature decreases as the height-to-radius ratio increases 

for all the loading cases considered. In the case of cylindrical shells with positive Gaussian curvature, 

imperfection sensitivity increases for external pressure, torsion and thermal load, while for axial load 

it decreases with the increase of height-to-radius ratio.  

Alexander [52] developed an approximate theory for the analysis of the collapse of thin 

cylindrical shells under axial loading. The resulted solution had the following form: P=Ct1.5�D, 

where P is the collapse load, t is the cylindrical shell’s thickness, D is the diameter of the cylindrical 

shell and C is a material constant.  
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Seide and Weingarten [53] studied the stability of circular cylindrical shells under pure bending 

by using Bartdorf’s modified Donnel’s equation and the Galerkin method. The authors showed that 

the maximum critical bending stress is equal to the critical compressive stress for all practical 

purposes, which was contrary to the commonly accepted value.  

Schenk and Schuëller [54] investigated the effect of random geometric imperfections on the 

limit loads of isotropic, thin-walled cylindrical shells under deterministic axial compression. The 

authors introduced a concept for the numerical prediction of the large scatter in the limit load which 

was observed in experiments using direct Monte Carlo simulation technique in context with the Finite 

Element Method. The geometric imperfections were modeled as two dimentional, Gaussian stochastic 

processes with prescribed second moment characteristics which were taken from a database of 

measured imperfections. The limit loads were determined by geometrically non-linear static analysis 

using the code STAGS (Structural Analysis of General Shells).  

Shen and Chen [55] studied the buckling and post-buckling behavior of perfect and imperfect 

cylindrical shells having finite length under combined loading of external pressure and axial 

compression. The authors developed a theoretical analysis for the buckling and post-buckling of 

circular cylindrical shells under combined loading using a singular perturbation technique. The 

analysis was based on the boundary layer theory which includes the edge effect in the buckling of 

shells. The proposed theory was validated by comparing the results with detailed experimental data.  

2.2.2. Studies on Conical Shells 

Jabareen and Sheinman [56] examined the effect of the pre-buckling non-linearity on the 

bifurcation point of a conical shell by using Donnel, Sanders and Timoshenko shell theories. The 

eiegenvalue problem was solved by iterative methods from the non-linear equilibrium state to the 

bifurcation point. The authors developed a new algorithm for the real buckling behavior which 

covered the entire non-linear pattern. The proposed algorithm was necessary for structures with a 

softening process where the pre-buckling non-linearity depresses the buckling level relative to the 

classical one. The algorithm developed by the authors involves non-linear partial differential 

equations divided into two sets by the perturbation technique as following: a set of equations for the 

pre-buckling state and a set of equations for the buckling state. The equations were solved by the 

following methods: in the circumferential direction the variable was expanded in Fourier series and 

in the axial direction the finite differences method was used. The procedure was implemented into a 

general computer code.  

Tovstik [57] studied the stability of elastic cylindrical and conical shells assuming that their 

buckling behavior consisted in the formation of a number of dents which depend on the initial stresses 
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and on the curvature of the middle surface. The author showed that, in the most simple case, when 

the initial stresses and the curvature of the middle surface are constant, the dents cover the entire 

surface of the conical or cylindrical shell. If the initial stresses and the curvature of the middle surface 

are variable, then the buckling mode is complicated. The dents may occur in the vicinity of the most 

“vulnerable” lines and points.     

Chandrashekhara and Karekar [58] carried out a bending analysis of a truncated conical shell 

under asymmetrical bending using an approximate theory similar to Donnel’s theory for cylindrical 

shells.  

Chryssanthopoulos et al. [59] used a finite element analysis to quantify critical elastic response 

and imperfection sensitivity in order to validate existing design recommendations for unstiffened 

cones and to develop a design approach for stringer-stiffened cones under compression. Also, 

Chryssanthopoulos and Spagnoli [60] studied the non-linear behavior of stringer-stiffened cones 

under axial compression by using finite elemenet analysis. The authors presented various alternatives 

of boundary conditions and analysed the sensitivity of the response to the radial edge constraint. The 

authors showed that the initial stiffness and the limit load can be severily reduced if the radial edge 

displacements are not constrainted. This means that the linear eiegenvalue results can be misleading.  

Kouchakzadeh and Shakouri [61] studied the buckling of two joined conical shells, simply 

supported and subjected to axial compression by using Donell’s thin plate theory and the principle of 

minimum strain energy. The continuity conditions from the joining section of the two conical shells 

were expressed by the resultants of the stresses and deformations. The equations were solved in the 

following manner: for the circumferential direction trigonometric responses were assumed, while for 

the meridional direction the solutions had the form of series. The paper studies the influence of the 

cone’s vertex angle and of the length of the meridians on the critical buckling load, on the buckling 

mode and on the number of circumferential half-waves. According to the studies, the critical buckling 

load of the joined conical shells increases as the slope of the meridians incline to the cylindrical 

structure. In case of short members, the critical buckling load of joined conical shells decreases rapidly 

if the values of the angles of their vertices incline to be equal (i.e. there is a lower degree difference 

between them). In case of long members, the critical buckling load of joined conical shells is equal to 

the minimum between the critical buckling loads determined separately for each conical shell. Also 

the bearing capacity of the structure subjected to axial forces increases if two joined conical shells are 

used instead of one.  

Ecsedi [62] derived a formula for the torsional stiffness of a conical membrane shell made of 

linear elastic homogeneous isotropic material. The torsional stiffness of a truncated conical shell was 
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defined as the value obtained from the square of the applied torque divided by two times the strain 

energy in the state of pure torsion.  

Maali et al. [63] studied the global longitudinal imperfections created by welding and their 

effects on external pressure load bearing capacity. The study was carried out using finite element 

models. The models were modified to include one or two line imperfection with amplitudes of six 

different magnitudes. According to the study the load-bearing capacity resulted from buckling 

analysis was double the result from Jaward theory [64] for models without imperfections. Also, the 

authors remarked that, by increasing the height of the cone, the imperfections’ weakening effect also 

increased.  

Sofiyev and Kuruoglu [65] investigated the buckling of homogeneous and non-homogeneous 

orthotropic thin-walled truncated conical shells under axial load and in large deformation. The authors 

first derived the governing relations using the large deformation theory with von Karman – Donnel 

type kinematic non-linearity. The the authors determined the modified Donnel type stability and 

compatibility equations of non-homogeneous orthotropic thin-walled truncated conical shells in large 

deformations. The equations were solved analytically. Finally, the authors investigated the influences 

of the non-homogenity, orthotropy and variation of the conical shell’s geometry on the non-linear 

axial buckling load. The proposed analysis was validated by comparing the results of the study with 

results from the literature.  

Veldman [66] investigated the wrinkling interaction curves of straight and conical inflated 

beams subjected to torsion and bending. The interaction curve obtained by analytical methods was 

compered to the one obtained from finite element models. The author showed that the coarseness of 

the mesh strongly influences the wrinkling load predictions. Thus, a refined mesh is necessary for the 

analysis. The author also showed that the interaction curve of the conical beam is described by a near 

straight torque mode path and a quadric bending mode path.  

Watts et al. [67] studied the non-linear bending and snap-though instability phenomenon of 

isotropic composite conical shell panels using the element free Galerkin method (EFG) with moving 

kriging (MK) shape function. The non-linear equations of equilibrium were developed from Sanders’ 

shell theory along with von Karman’s strain-displacement assumptions. The equations were solved 

by a modified Riks technique in conjunction the Newton-Raphson method. The convergence and 

accuracy of the EFG method were analysed for the linear and non-linear bending behavior of conical 

shells. Also, the arc-length control algorithm was used to determine the non-linear equilibrium paths 

of conical shells under different loading conditions.  

Shakouri et al. [68] analysed the simultaneous buckling modes of compressed conical shells. 

The elastic buckling of shell structures under different loading conditions is described by the 
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simultaneous presence of several buckling modes corresponding to the same buckling load. In [68] 

the simultaneous presence of several buckling modes is studied in axially compressed conical shells. 

For the buckling analysis of these structures Donnel’s theory was used, while the presence of the 

simultaneous buckling modes was determined by the semi-analytical Galerkin method. According to 

the study, the Galerkin method was successfully applied to axially compressed conical shells, 

emphasizing, as in the case of cylindrical shells, the presence of simultaneous buckling modes. The 

results obtained by the Galerkin method were similar to the ones obtained by FEA from the half-wave 

number distribution’s point of view. The distribution of the simultaneous buckling modes of 

compressed conical shells was described by the Koiter circle [69] for cylindrical shells by using the 

alternative definitions of the non-dimensional space of wavelengths. Keeping the physical meaning 

of the half-wavelengths, the buckling modes of conical shells were inserted in the Koiter circle by 

normalizing the meridional and the circumferential half-waves with respect the middle axis parallel 

to the linear half-wave from bending given by the average curvature radius of the conical shell. Also 

the buckling modes of conical shells can be inserted in the Koiter circle by equalizing the half-wave 

lengths from buckling and the linear half-waves lengths from bending with an ideal cylindrical shell. 

These optimized values of length and radius of conical shells, determined by simplifying their 

buckling to the buckling of an equivalent cylindrical shell, may provide an understanding of the 

distribution of the simultaneous buckling modes and, also, of the sensitivity to imperfections.  

Seide [70] studied the buckling of thin circular truncated conical shells under torsion in a 

manner similar to the buckling under uniform hydrostatic pressure. According to the numerical 

results, the critical torsional moment of a truncated conical shell is equal to that of an equivalent 

cylindrical shell whose length and thickness are the axial length and the wall thickness of the analysed 

conical shell and whose radius is a function of the semi-vertex angle-to-slope ratio of the respective 

truncated cone.  

Shadmehri et al. [71] proposed a semi-analytical buckling analysis method for composite 

conical shells under axial compression. The buckling analysis of laminated composite conical shells 

was done taking into consideration the effect of shear strains on the transversal direction because it 

was demonstrated that the classical plate theory is not precise enough for laminated conical shells 

with average thickness, where the material anisotropy is severe [72], [73]. The formulation of the 

method began from the principle of minimum potential energy and, together with the Ritz method, 

resulted the equation that lead to the determination of the solution of the buckling problem. The 

authors developed an axial symmetric formulation and, respectively an axial non-symmetric one. The 

conical shells were analysed with each type of formulation and buckling loads were obtained, with 

the smallest value being the critical buckling load. According to the analysis, the critical buckling 



 
 

32 
 

load of short conical structures with small thickness decreases as the angle of the semi-vertex 

increases. The decrease of the critical buckling load intensifies when the value of the angle is larger 

than 20°. This is an important aspect regarding the design of these structures. Also the critical buckling 

load increases as the angle of the fibers in the short laminated conical shells increases.  

2.3. The Analysis and Design Methods of the Thin-walled Structures 

The following section briefly presents buckling analysis and design methods for thin walled 

structures.  

2.3.1. The Finite Element Analysis 

The Shell Finite Element Analysis (SFEA) is one of the most used for thin-walled structures. 

This method is able to work easily with complex geometric configurations and with arbitrary loads 

and supports. The drawbacks of the classical SFEA are as follows: the method is not able to provide 

the modal participation and the SFEA models require a large number of degrees of freedom in the 

buckling analysis. Therefore, SFEA was combined with other analysis methods such that less 

computational effort and time could be achived.  

For example, Nedelcu [74] developed a method which combines the GBT with SFEA to 

perform the buckling analysis of perforated thin-walled members. The proposed method is able to 

provide the participation of pure buckling modes (i.e. global, local and distortional buckling) in a 

coupled instability, an aspect which is harder to achieve by using only SFEA. The advantage of the 

proposed method comes from the fact that only GBT cross-section deformation modes are used in the 

analysis instead of pure member deformation shapes. Also, there are no restrictions regarding the 

shape of the member’s cross-section, the loading and the boundary conditions.  

Also, Nedelcu and Cucu [75] developed a method that combines GBT with SFEA which is able 

to identify the pure buckling modes from the general buckling of isotropic thin-walled members. The 

advantage of the method consists in the capacity of using only GBT cross-section deformation modes 

instead of member mode shapes. Therefore, the participation of each pure buckling mode in a coupled 

instability can be evaluated accurately and quantitatively. The proposed method doesn’t have 

restrictions regarding the shape of the cross-section, the loading and the boundary conditions.     

2.3.2. The Effective Width Method 

The Effective Width Method is the most popular buckling design method for thin-walled 

structures. This method uses an “effective” cross-section, obtained by eliminating areas which are 

prone to local buckling. Therefore, the determination of the critical local buckling load is avoided. 
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The critical distortional buckling load is determined using semi-empirical formulae, while the critical 

global buckling load is determined with the classical Ayrton-Perry formulae. This strategy was 

adopted by design codes for thin-walled structures such as Eurocode 3 [2], AISI 1996 [22], AISI 2011 

[76] and AS/NZS 1996 [77]. The design methods are, generally, similar. The evaluation of the 

stability consists in the following steps: 

(i) The determination of the critical elastic load using the effective cross section; 

(ii) Including the weakening caused by imperfections and the possible favorable effects given 

by the post-critical bearing capacity (for example the significant post-critical strength reserve of the 

local buckling). 

In the last decades, many researchers proved by experimental and numerical methods that, 

generally, the design codes for thin-walled structures significantilly underestimate their bearing 

capacity and the determination of the effective cross-section is a time-consuming process for the 

structural engineer.  

2.3.3. The Direct Strength Method 

The Direct Strength Method (DSM) was first developed by Hancock and Pekoz. Later, Schafer 

developed DSM to the current form and introduced it in the design code NAS – Appendix 1 [78] in 

2004. This method uses the gross section and is based on the elastic critical loads/moments including 

cross-section deformation (distortion and local buckling). These critical loads are then used to 

determine the bearing capacity of the structural member under coupled instability. To evaluate these 

elastic critical loads, Schafer et al. created the CUFSM [79] program, which is based on a special 

TWB analysis method called the Constrained Finite Strip Method (cFSM). The authors developed 

cFSM by inserting some of the hypotheses of the Generalized Beam Theory (described in Section 

2.3.5) in the standard Finite Strip Method (FSM, described in the next section). Therefore, the authors 

forced FSM to determine pure buckling modes used by the DSM for the design of thin-walled 

structures [80]. 

2.3.4. The Finite Strip Method 

The Finite Strip Method (FSM) is a semi-analytical buckling analysis method developed for 

thin-walled prismatic plated structures. The FSM is described by the following features: discretization 

into strips which are in the form of long and narrow rectangular plates, the selection of longitudinal 

shape functions which represent exact or approximate solutions of the problem and the use of 

polynomial transverse shape functions similar to Finite Element Method applications. Therefore, 

FSM involves a significantly smaller number of degrees of freedom than SFEA, requiring less input 
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data and computational effort. Because it is necessary to pre-define adequate longitudinal shape 

functions, FSM can only be applied to certain types of regular structures.  

In the buckling analysis, the stiffness of each strip results from a combination of small deflection 

plate bending terms and moderate deflection of membrane terms under plane stress. The adopted 

shape functions are standard cubic polynomials for the transverse flexural degrees of freedom, linear 

polynomials for the transverse membrane degrees of freedom and sinusoidal functions along the 

longitudinal direction. The choice of these longitudinal functions implies that the member’s end 

sections are globally and locally pinned and they are able to warp freely. In this situation, only 

solutions for the buckling of thin-walled structures with pinned end supports are obtained. However, 

the FSM is able to analyse more complex boundary conditions.  

There are at least two programs based on FSM available to the technical and scientific 

community, such as THIN-WALL [81] and CUFSM [79].  

2.3.5. The Generalized Beam Theory 

The Generalized Beam Theory is one of the most evolved methods specialized in the analysis 

of thin-walled structures. GBT determines the general solution of the linear and non-linear analysis 

of TWB with prismatic sections using an “enriched” bar theory which is able to describe rigid body 

displacements and cross-section in-plane and out-of-plane deformation. The method was originally 

developed by Schardt [5], [82] and it is able to run a variety of structural analyses, the most important 

being the stability of thin-walled structures [83], [84]. GBT is able to reproduce the buckling shape 

of the structural member by a linear combination of pure deformation modes which take into account 

the rigid body displacements (global modes) and the deformations of the transversal plane (local and 

distortional modes, among others). Therefore, GBT is able to: 

(i) Determine the participation of each deformation mode in a coupled instability problem; 

(ii) Determine the pure buckling modes (for example, only the global buckling, distortional or 

local buckling of the analysed member). 

Both analyses are necessary for the design of slender TWB, especially for cold-formed steel 

profiles regardless of the method or the design code applied. Other advantages of GBT are the short 

computational time and efficiency due to the use of bar elements instead of shell or 3D elements. 

Therefore, GBT uses less degress of freedom than SFEA or FSM with the same numerical accuracy. 

The only program based on GBT currently available is GBTUL [85], which is able to perform 

buckling (bifurcation) and free vibration analyses. 

Methods such as SFEM, FSM or spline FSM are able to model any type of thin-walled structure 

and to perform non-linear analysis in elasto-plastic domain with geometrical imperfections and 
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residual stresses, but they are not able to determine pure buckling modes without inserting complex 

kinematic constrains. Also these methods are not able to determine the modal participation in a 

coupled instability. The specialized methods perform the opposite and this is evident when the 

analysis is run with GBTUL or CUFSM. Currently, these programs are able to model TWB with 

prismatic cross-sections and polygonal cross-sections under classical loading and boundary 

conditions. Also, GBTUL and CUFSM are able to model circular cylindrical shells by approximating 

the cross-section with a polygon made of at least 30 segments. The programs are not able at the 

moment to model initial imperfections or residual stresses, to model bars with variable cross-sections 

and, also, they are limited to buckling and vibration analyses. 

2.4. Previous Studies of the Generalized Beam Theory 

The following section presents the main numerical and analytical studies regarding the analysis 

of thin-walled structures using GBT.  

2.4.1. Numerical and Analytical Studies of the Generalized Beam Theory 

Davies and Leach popularized GBT with the papers „First-Order Generalised Beam Theory” 

[86] and „Second-Order Generalised Beam Theory” [87].  

Bebiano et al. [88] developed a GBT formulation for the elastic linear buckling of thin-walled 

members with arbitrary flat-walled cross-sections (including closed cells combined with open 

branches) subjected to general loadings. The general loadings include transverse forces which act 

away from the member’s shear center axis. Also, the general loadings may involve the presence of 

pre-buckling stress distributions associated with any possible combination of all the stress tensor 

membrane components and of the cell shear flows. Therefore, all the geometrically non-linear effects 

need to be taken into consideration. The numerical examples used for the validation of the proposed 

formulation were as follows: a RHS cantilever subjected to two tip point loads, a simply supported 

beam with a closed-flange I-section under a uniformly distributed load and a two-cell RHS cantilever 

subjected to tip transverse forces and couples. For all the numerical examples, the loads were applied 

both along the shear center axis and along axes parallel to it, located at the beam’s top and bottom 

surfaces. The results were obtained by GBTUL 2.0 and consisted in pre-buckling stress fields, 

buckling curves and buckling mode shapes. The proposed formulation was validated by comparing 

the results obtained by GBTUL 2.0 with results obtained by SFEA with ANSYS.  

Silvestre and Camotim [89] developed a GBT formulation for the buckling analysis of 

composite thin-walled members made of laminated plates and which display arbitrary orthotropy. The 

concepts and procedures of the first order GBT for isotropic materials are adapted to take into account 
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the member’s orthotropy. The same authors developed a second order GBT for the analysis of 

composite thin-walled members made of laminated plates with arbitrary orthotropy [90]. The 

proposed second order GBT formulation was validated by investigating the buckling behavior of thin-

walled orthotropic columns and beams. 

Silvestre and Camotim also present in [91] a GBT formulation for the first order and buckling 

analysis of composite thin-walled members made of laminated plates which display arbitrary 

orthotropy, often designated as anisotropic laminates. The proposed formulation includes elastic 

coupling effects, warping effects, cross-section in-plane deformations and shear deformations. The 

classic GBT formulation was adapted to take into account the specific aspects associated with shear 

deformation. The numerical examples analysed and discussed in the paper consisted in a lipped 

channel column exhibiting non-aligned orthotropy and a lipped channel column with cross-ply 

orthotropy. For the first numerical example the first order and buckling behavior was assessed, while 

for the second numerical example the influence of the shear deformations on the buckling behavior 

was evaluated. 

Gonçalves and Camotim [92] studied the local and distortional buckling of TWB with regular 

convex polygonal sections under axial force, bending and torsion. The authors analysed the influence 

of the neutral axis of the bar on the critical buckling load and they showed that the lowest values of 

buckling stresses are obtained when the neutral axis is parallel with the section’s wall. The local 

buckling of the sections where the displacements at the intersection of walls are null becomes critical 

as the number of walls increases, more exactly the cross-section has at least 10 walls. For bars 

subjected to torsion, the local and distortional buckling were studied and also the influence of shear 

strains and coupled deformation modes. Generally, the critical stresses decrease as the length of the 

bar increases until a certain plateau is reached for long bars, and duplicate buckling modes result. 

Also Gonçalves and Camotim [93] determined the deformation modes of the TWB with curved 

cross-section using GBT by using a polygonal approximation of the middle line. The paper proposes 

a new cross-section analysis method which discretizates the geometry of the section independentily 

from its number of degrees of freedom necessary for the determination of the deformation modes. 

This procedure is more efficient than the cross-section analysis of the polygonal section because a 

curved section can be analysed with precision without increasing the number of deformation modes. 

The procedure developed for curved sections may also be applied to sections with rounded corners, 

because the degrees of freedom obtained from the discretization of the curved sections may be 

neglected. This possibility does not exist in the cross-section analysis of the classical GBT.   

Gonçalves et al. [94] studied the cross-section deformation modes of thin-walled members with 

arbitrary polygonal cross-section using GBT. The authors focused on the natural shear deformation 
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modes, more exactly the deformation modes which involve non-null membrane shear strains and 

which are independent of the cross-section discretization employed. These deformation modes are 

important in capturing the behavior of thin-walled bars with multi-cell cross-sections under torsion 

and/or distortion. The authors derivated fundamental properties of the shear modes, proposed an 

efficient mode extraction procedure and developed analytical results for different particular cases.    

Bebiano et al. [95] presented the development and the application of a new procedure to perform 

GBT cross-section analysis. The proposed procedure is able to analyse arbitrary flat-walled cross-

section shapes, it can be numerically implemented in a systematic and straightforward manner and it 

provides a rational set of deformation modes. The deformation modes determined by the proposed 

GBT cross-section analysis are hierarchically organized into several families. Each family of 

deformation modes has well-defined structural and mechanical characteristics. 

Silva et al. [96] adapted GBT to TWB made of composite material reinforced with fiber 

polymers and having arbitrary open section. This GBT extension takes into account the cross-section 

distortions. The validation of the proposed extension was done by the analysis of an “I” section 

column. In the paper it is remarked that if the product of the Poisson coefficients is neglected from 

the elastic properties of the membrane at columns with orthotropic folds, the results of the analyses 

lead to underestimations of the buckling loads by 300%. Therefore, a new constitutive relationship 

was proposed based on the hypothesis that the membrane transversal stress resultant is null leading 

to more precise buckling loads. Also the hypothesis of uniformliy distributed pre-buckling normal 

stresses in columns with walls having different axial stiffness is incorrect from the theoretical point 

of view because it leads to errors in results. 

De Miranda [97] formulated a GBT which takes into account plate-like (Reissner-like) shear 

deformations (besides the membrane-like ones already considered in GBT). The shear is introduced 

through two deformation modes: basic shear and additional shear. For each basic shear there is a 

bending mode and  each one contains a generalized shear deformation such that the classical shear 

deformation components of Timoshenko’s beam theory are recovered. Therefore the out-of-plane 

rotation doesn’t coincide with the derivative of the transversal displacement. The additional shear 

introduces non-linear variations of the displacements along the section’s walls. According to the new 

kinematic relationships, the cross-section analysis is revised and it is based on an unique method of 

modal decomposition of both classes of deformation modes. After the modal decomposition the 

bending displacements can be distinguished from the shear displacements. Also, particularly, the 

classical degrees of freedom and the beam theories may be recovered.  

Peres et al. [98] adapted the first order GBT for TWB with deformable cross-section which 

have the longitudinal axis as circular arch. This extension makes it possible to keep the classical GBT 
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hypothesis, more exactly Kirrchhoff’s, Vlasov’s and the null membrane strain hypotheses. This means 

that the proposed formulation preserves the general efficiency of GBT for bars with straight 

longitudinal axis. The equilibrium equations were expressed with respect to GBT modal matrices and 

also with respect to stress resultants. The proposed formulation is able to recover the classical Winkler 

equilibrium equations (in case of in-plane deformations) and Vlasov’s classical theory (in case of out-

of-plane deformations) and the corresponding relationships between stress resultants and strains. The 

numerical examples were solved using a FE formulation. In all the case studies, the results obtained 

using only a few deformation modes and a small number of finite elements were precise. Therefore it 

was demonstrated that the modal decomposition specific to GBT is able to provide a detailed and 

unique understanding of the first-order behavior of bars with curved longitudinal axis.    

Natário et al. [99] developed a GBT formulation to analyse the elastic localized web buckling 

of thin-walled steel beams under concentrated loads. These could be either cold-formed steel beams 

subjected to web crippling failure or welded steel beams subjected to patch loading failure. The 

proposed GBT formulation was validated by comparing the results with values determined by SFEA. 

The numerical examples consisted in cold-formed steel plain channel beams with web crippling 

configurations and welded steel “I” section beams with patch loading configurations. The authors 

found that the pre-buckling longitudinal and shear stresses had to be included in the buckling analysis 

of External One Flange (EOF), Internal One Flange (IOF) and Patch Loading Test (PLT) 

configurations. Also, the authors found that the pre-buckling transverse normal stresses had to be 

included in the buckling analysis of External Two Flange (ETF), Internal Two Flange (ITF) and 

Opposite Patch Loading Test (OPTL) configurations. In case of beams with EOF, IOF and PLT 

configurations in the GBT pre-buckling analysis the global and shear modes must be considered, 

while in the GBT buckling analysis only the local modes may be considered. In case of beams with 

ETF, ITF and OPTL configurations in the GBT pre-buckling analysis transverse extension modes 

should be considered, while in the GBT buckling analysis only local modes may be considered.  

Davies et al. [100] used two theoretical methods to determine the ultimate load of perforated 

steel columns and the results obtained by these two methods were compared to the results obtained 

by experimental studies. Davies showed that the results obtained with GBT are very close with the 

ones obtained by SFEA and with a shorter computational time. 

Jönsson and Andreassen [101] present a new systematic method and a detailed description of 

the semi-discretization process developed from the kinematic relationships, from strain energy and 

from the variation of strain energy which lead to the GBT homogeneous differential equation and the 

complete solution provided by the identification of all the eigenvalues and eigen modes. The proposed 

method is a considerable theoretical and practical development, because the GBT equations are solved 
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analytically assuming exponential longitudinal functions and the formulation is validated without 

giving special attention to simple closed or multi-cell cross-sections. 

Piccardo et al. [102] proposed a new method for the evaluation of GBT fundamental 

deformation modes to analyze the TWB. The proposed method can be applied easily to open, closed 

or partially closed cross-sections. The main advantage of the method is the capacity to determine an 

orthogonal set of fundamental deformation modes for any cross-section using a one step numerical 

procedure. On the other hand, the classical GBT needs two steps for the determination of the same 

set of deformation modes as follows: in the first step the set of non-orthogonal deformation modes is 

evaluated and in the second step the set is orthogonalized by solving the eigenproblem. The proposed 

method was validated through case studies conducted on bars with open “C” section and, respectively 

for bars with partially closed section. The results showed that the fundamental deformation modes 

determined using the method proposed by Piccardo et al. were identical with the ones determined by 

the classical two-step procedure. The deformation modes determined by the proposed method provide 

similar results even though they aren’t exactly identical. The differences occur due to the fact that the 

dynamic deformation modes may be combined with one or several rigid modes, which is not the case 

if the deformation modes are determined by the classical procedure. The GBT classical procedure 

requires a second diagonalization to determine the unlocal deformation modes with physical meaning. 

Despite this fact, the numerical values which result from the structural analysis are identical and 

independent from the method used to find the fundamental deformation modes. 

Garcea et al. [103] compared the Generalized Eigenvector (GE) method  with GBT for 

determining the cross-section deformation modes of thin-walled members with deformable cross-

section. The authors reviewed the two methods by emphasizing their differences and similarities and 

also their solutions for problems with semi-analytical solutions. Then the GE and GBT deformation 

modes of four selected cross-sections were determined and analysed in detail. The authors focused on 

the efficiency and accuracy of the GE and GBT deformation mode sets in the calculation of the global, 

local, distotsional first-order and buckling behaviors of bars with the previously analysed cross-

sections. The authors observed that GE and GBT, which are both based on the method of variable 

separation, yield accurate results even though the methods use different structural models and mode 

selection strategies. GE is based on a two-dimensional cross-section discretization which does not 

rely on simplifying assumptions such as plane stress and Kirrchoff’s hypothesis, unlike GBT. The GE 

deformation modes are separated into independent in-plane and warping components leading to the 

fact that, for accurate results, more deformation modes are necessary for GE cross-section than for 

GBT. Moreover, the GBT deformation modes are separated according to strain criteria which makes 

it easier to discard specific components and avoid locking problems. However, the GE method 
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requires less computational effort than GBT for the determination of the deformation modes of 

complex cross-sections and makes it possible to consider plate-like shear deformation and through-

thickness deformation. Despite the different assumptioins and mode selection strategies, GE and GBT 

offer complementary advantages. 

Ádány et al. [104] provided the fundamental derivation details and a comparison between GBT 

and the constrained Finite Strip Method (cFSM) for the buckling analysis of unbranched thin-walled 

members. The comparison between the two methods included practical aspects and theoretical points 

on how the displacement fields are decomposed into deformation modes. The numerical examples 

presented in the paper consisted in the buckling analysis of cold-formed lipped channel members 

subjected to compresson and bending. The authors showed the power of GBT and cFSM to 

decompose the buckling mode into pure deformation modes, they illustrated the use of the identified 

deformation modes to evaluate the modal participation to a buckling mode and demonstrated that 

GBT and cFSM provide similar capabilities to analyse the stability of thin-walled bars despite their 

distinct developments. 

Nedelcu [3] adapted GBT for the buckling analysis of TWB with variable open cross-section. 

In this case, the stiffness matrices are no longer constant along the bar’s length. Therefore the 

differential equilibrium equations have a new formulation. In the second order analysis of the bars 

with variable cross-section, only the effect of pre-buckling longitudinal normal stresses was taken 

into account. The differentiation of the variable stiffness matrices was done by two methods: 

analytically, for a particular case of variable cross-section, and numerically, for the general cases of 

variation. The proposed GBT formulation is only valid with TWB with small variation slopes.   

Cai and Moen [105] presented a method for the analysis of TWB with perforations using GBT. 

The perforated bars are treated as an assembly formed by multiple prismatic sub-bars with 

compatibility equations for displacements and derivatives of displacements with respect the gross and 

net cross-section. The GBT system of differential equations was solved using the FEM where the 

compatibility conditions were expressed in terms of finite element degrees of freedom for the 

first/order analysis and eiegenbuckling problem. The term which describes the geometric stiffness is 

changed to take into account the non-linear distribution of the normal stresses in the vicinity of 

perforations. The normal stresses from the vicinity of perforations require a first/order analysis to 

determine the initial state of stress before continuing with the buckling analysis.   

2.4.2. GBT based Finite Element Formulations 

Bebiano et al. Error! Reference source not found. used the GBT based FE formulation for 

the buckling analysis of TWBs subjected to non-uniform bending. The proposed GBT-based 
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formulation uses beam finite elements which take into account the stiffness reduction associated to 

applied longitudinal stresses with linear, quadratic and cubic variation.  The novelty of the paper is 

that cubic moments are analytically integrated in the geometric matrices and shear stresses are 

obtained from equilibrium rather than by a first-order analysis, which makes it unnecessary to use 

shear modes. 

Silvestre and Camotim [107] analysed the stability of TWB with orthotropic “C” section made 

of a composite material with fiber polymere reinforcement by using a GBT-based FE formulation. 

The paper is focused on the structural analysis, more exactly on the formulation and validation of the 

finite elements which lead to a simpler and more efficient analysis for any given orthotropic structural 

member. The studies showed that a bar divided into 2m finite elements (where m is the number of 

buckling waves) always leads to precise results with the differences being less than 1%. 

Basaglia and Camotim [108] applied the GBT based FE formulation to analyse the buckling 

behavior of the following thin-walled steel structural systems: beams of storage rack systems, pitched 

roof industrial frames, portal frames built from cold-formed rectangular hollow section (RHS) profiles 

and roof supporting trusses. The analysed structural systems exhibit different support conditions and 

are subjected to various loads. By using GBT, the authors were able to evaluate the effect of different 

geometries and/or bracing arrangements on the local, distorsional and/or global buckling behavior of 

the previously mentioned structures. The proposed formulation was validated by comparing the GBT-

based results with the results determined by SFEA carried out in ANSYS. The authors remarked that 

the critical loads and the buckling shapes from the GBT-based FE formulation (which used beam 

finite elements) and from SFEA with ANSYS (which used shell finite elements) were virtually similar 

despite the large difference between the numbers of degrees of freedom involved in the analyses. 

Basaglia et al. [109] developed a GBT-based FE formulation for the elastic local, distortional 

and global buckling analysis of frames made of TWB. For the bar finite element used to determine 

the stiffness matrices, the properties of the frame nodes and the relationships between the modal 

degrees of freedom of the end sections of the connected members were taken into account. The same 

paper presents the kinematic models adopted to simulate the transmission of the torsional strains and 

the compatibility of the local displacements of the frame’s nodes.   

The same authors applied the GBT based FE formulation for the local, distortional and global 

buckling analysis of the TWB frames in the post-critical domain [110]. The study of the stability of 

TWB frames was done by establishing the GBT non-linear system of equilibrium equations and by 

the discretization method of the bars including the influence of the nodes’ behavior. Also constrains 

were inserted to simulate the compatibility between the deformation of the end sections and the 

transversal displacement of the walls from bending for two non-aligned bars with full section, 
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respectively with “C” section connected in the frame’s node. The system of non-linear equations was 

solved using an incremental-iterative method which combines the Newton-Raphson method with a 

displacement or load control strategy.     

Nedelcu [111] presented a method for the decomposition of elastic buckling modes based on 

GBT which uses the SFEA. This method is able to decompose any buckling mode in pure deformation 

modes and determines their quantitative participation. The deformation modes may be determined 

using FEM or other similar numerical methods. For the formulation of the method of decomposition 

of the buckling mode, the GBT cross-section analysis was used to obtain the modal components of 

the deformed section, the end section transversal moments and the stiffness matrices. The GBT modal 

amplitude functions were determined from the deformations of the finite elements using the modal 

orthogonality. The modal participation factors were then determined based on these modal amplitude 

functions. The advantage of the proposed method of decomposition is the fact that there are no 

restrictions regarding the shape of the cross-section and the loading conditions of the bar. Also the 

computational speed is large because the eigen problem of the cross-section analysis involves a 

relatively small number of matrix operations. Therefore a structural analysis which involves complex 

operations is not necessary anymore. Currently the method was formulated for prismatic TWB with 

classical boundary conditions.    

Camotim et al. [112] developed a GBT-based FE formulation to analyse the local and global 

buckling behavior of thin-walled bars with arbitrary loading and boundary conditions. The proposed 

formulation takes into account the longitudinal normal stress gradients and the ensuing pre-buckling 

shear stresses. The non-standard support conditions illustrated in the paper are full or partial localized 

displacement or rotation restraints, rigid or elastic intermediate supports and end supports 

corresponding to angle connections. The numerical examples used for the GBT-based FE analysis 

consisted in lipped channel beams and lipped “I” section beams under uniformly distributed or mid-

span point loads applied at the shear center axis and lipped “I “ section columns under uniform 

compression. The proposed formulation was validated by comparing the results with values yielded 

from SFEA with ANSYS. 

Basaglia et al. [113] present the GBT-based FE formulation to analyse the global buckling 

behavior of plane and space thin-walled frames. The proposed formulation includes only the first four 

rigid body deformation modes and consists in the following aspects: the kinematical models 

developed to simulate the warping transmission at frame joints which connect at least two non-aligned 

“U” and “I” section members, the procedures adapted to handle the effects occurring from the non-

coincidence of the member’s centroidal and shear center axes, namely cross-sections without double 

symmetry and the definition of joint elements which provides a relation between the GBT degrees of 
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freedom of the connected member and the generalized displacements of the joint. The proposed GBT-

based FE formulation was validated by comparing the results with values determined by SFEA and 

beam finite element analysis carried out in ANSYS. 

Graça et al. [114] developed a GBT-based FE formulation concerning the local, distortional and 

global buckling of lipped channel and “Z” section cold-formed steel purlings restrained by steel 

sheeting and subjected to uplift loads. The proposed formulation is also applied to lapped joints which 

have the purpose to stop the occurence of local and distortional buckling phenomena. In this case 

GBT is used to determine the strengthening length of the lapped joint. The authors modeled the steel 

sheeting by means of elastic translational and rotational springs located at the purlin’s upper flange 

and the lapped joint was modeled by doubling the cross-section’s wall thickness. The validation of 

the formulation consisted in the comparison of the GBT-based results with values determined by 

SFEA performed with ANSYS. 

Henriques et al. [115] adapted the GBT-based FE formulation to calculate the buckling loads 

of steel-concrete composite beams under hogging bending (i.e. negative bending). In the proposed 

formulation two types of buckling modes were considered: the local buckling of the web, with the 

possible occurrence of a torsional rotation of the lower flange, and distortional buckling which 

combines lateral displacements and rotations of the lower flange with cross-section transverse 

bending. The buckling loads were determined in two steps: the first step involved the geometrical 

linear pre-buckling analysis which takes into account shear lag and concrete cracking effects and the 

second step involves an eigenvalue buckling analysis using the pre-buckling stresses determined at 

the first step and allowing the cross-section in-plane and out-of-plane deformations. With the 

proposed GBT formulation, the authors obtained a finite element with a reasonable number of degrees 

of freedom which is able to fulfill the principles of the inverted “U” frame model prescribed by 

Eurocode 4 [116].  

Also, Henriques et al. [117] developed a GBT-based FE formulation to analyse the materially 

non-linear behavior of wide-flange steel and steel-concrete composite beams up to collapse. The finite 

element includes reinforced concrete cracking and/or crushing, shear lag effects and steel beam 

placticity, including shear deformation of the steel web. The numerical examples presented in [117] 

showed that the proposed formulation is able to capture all the phenomena specific to steel-concrete 

composite beams at a very small computational effort.   

2.4.3. The Adaptation of the Generalized Beam Theory for Circular Cross-section 

Initially GBT was formulated for the buckling analysis of prismatic flat-walled TWBs, but later 

it was adapted to circular cross-sections. The first studies which adapt GBT for the first order and 
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buckling analysis of TWB with circular cross-section were conducted by Christof Schardt and 

Richard Schardt [5], [118], [119]. Further, Silvestre [120] developed the theory by studying the 

buckling of cylindrical structures under axial compression, bending, compression combined with 

bending and torsion. Also Silvestre [121] adapted GBT for the buckling analysis of cylindrical 

structures with elliptical section under compression. 

Nedelcu [4] adapted GBT for the buckling analysis of isotropic conical shells. The paper studies 

only conical shells under axial compression having different boundary conditions. As in the GBT 

extension  to prismatic TWBs with variable cross-section developed by the same author [3], the 

mechanical and geometrical properties are no longer constant along the bar’s length. However, in case 

of conical shells, these properties can be easily defined. In reference [4], the buckling modes were 

approximated as a combination of shell-type deformation modes that can be easily determined. The 

GBT system of equilibrium equations was solved by the the 4th order Runge-Kutta Lobatto IIIA 

numerical method [122]. This method proved to have limitations in case of structures subjected to 

arbitrary loading and boundary conditions and it was unstable in the case of coupled instabilities.   

2.5. Conclusions 

Thin-walled structures, which are frequently used in civil, naval or aerospace engineering, have 

high bearing capacity despite their small wall thickness. Because of the slenderness of these structural 

members, TWBs are prone to different types of buckling such as flexural buckling, flexural-torsional 

buckling, torsional buckling, local buckling or distortional buckling. The design of these structures is 

complex and often the design codes are based on simplified, approximative and empirical formulae 

which lead to oversized structures. Experimental and numerical studies have shown that the current 

design codes for thin-walled structures significantly underestimate their bearing capacity. For this 

reason it is necessary to develop more efficient buckling analysis methods that provide more accurate 

results.  

For design methods, the Direct Strength Method (DSM) and the Effective Width Method are 

the most widely accepted. The latter, which eliminates from the cross-section the areas prone to local 

buckling, has the drawback of being time-consuming for a structural engineer. The buckling analysis 

methods used for thin-walled structures are generally based on Shell Finite Elements, Finite Strips or 

Generalized Beam Theory. . Shell elements are able to model any type of thin-walled structures under 

any loading and boundary conditions and to perform geometrically and physically non-linear 

analyses, including residual stresses. However, shell models are not able to provide the modal 

participation in the case of coupled instabilities. It seems arguable that GBT is the most evolved 

buckling analysis method for TWBs and the most efficient, because the number of degrees of freedom 
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used in the analysis is much lower than in the case of shell elements and GBT is able to decompose 

the buckling modes into fundamental deformation modes and to determine their modal participation.  

The specialized literature provides different studies related to Generalized Beam Theory. 

Initially, GBT was developed for the buckling analysis of prismatic TWBs [5], but later this theory 

was adapted to other types of bars as TWBs with curved longitudinal axis [98], TWBs with circular 

and elliptical cross-sections [118], [119], [120], [121] and TWB with variable cross-section [3], [4]. 
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Chapter III 
Generalized Beam Theory 

3.1. Introduction 

Thin-walled structures have very slender cross-section walls. Therefore their structural 

efficiency depends mostly on their sensitivity to local instabilities, such as local buckling and 

distortional buckling, and global instabilities such as flexural and torsional-flexural buckling. The 

study of the stability of thin-walled bars begins from the decomposition of the general buckling mode 

in pure deformation modes such as global modes, where the cross-section has a rigid body behavior, 

distortional modes, where relative displacements occur in the corners of the section in its own plane, 

and local modes such as local buckling of walls (see Figure 1.1). Thus, the formulation, validation 

and calibration of the formulae and of the analysis procedures for TWBs requires advanced 

knowledge of the buckling phenomenon of these types of members, which means the evaluation of 

the critical buckling loads and the determination of the corresponding buckling modes. Recently it 

was proved that Generalized Beam Theory (GBT), formulated by Richard Schardt [5], provides an 

elegant alternative to the analysis methods mentioned in Chapter II, even though its practical 

application is not widely spread. Currently GBT is only known to a few members of the scientific 

community Error! Reference source not found.. 

GBT, which extends Vlasov’s classical beam theory, consists in the decomposition of the 

buckling mode into a linear combination of cross-section fundamental deformation modes and in the 

determination of the degree of modal participation in coupled instabilities. These fundamental 

deformation modes take into account the rigid body displacements (global modes) and the transversal 

deformations (distortional and local modes) [107]. The efficiency of GBT is given by the use of bar-

type elements. Therefore, in the analysis, less degrees of freedom than in shell element models are 

involved. 

GBT was initially developed for prismatic TWBs. Later, this theory was adapted to other types 

of thin-walled structures such as TWBs with curved longitudinal axis [98], TWBs with variable cross-

section [3], [4] and TWBs with circular and elliptic cross-section [118], [119] [120], [121]. The 

following chapter presents an overview of the GBT for prismatic TWBs and the detailed GBT 

adaptation for isotropic conical shells with circular cross-section.   
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3.2. Generalized Beam Theory for Prismatic Cross-sections 

The following section presents general aspects of GBT for TWBs with prismatic cross-section. 

The purpose of the present section is to offer an insight of the GBT procedure in order to better 

understand the GBT adaptation for conical shells.  

First, let us consider the coordinate system and its corresponding displacements from Figure 

3.1, where x, s and z are the coordinates with respect the bar’s longitudinal axis, the cross-section’s 

middle line andthe wall’s thickness, respectively, and u, v and w are their corresponding 

displacements. GBT is based on the following simplifying assumptions: 

 (i) The Kirrchoff – Love hypotheses [123] for each cross-section wall: 

a) Straight lines perpendicular to the middle plane before deformation remain straight, 

perpendicular to the middle plane and inextensible after deformation: �zz=0. 

b) The normal stress acting along the direction perpendicular to the middle plane is neglected: 

�zz=0.  

 (ii) Vlasov’s hypothesis [124], which states that the middle plane lines parallel to x and s axes 

before deformation remain perpendicular among them after deformation:  �xs=0.  

(iii) The middle plane lines parallel to s axis are inextensible: �ss=0. 

The Kirchhoff – Love hypotheses, usually found in thin plates and shells theories, yield plane 

strain and stress states. Vlasov’s hypothesis and hypothesis no. (iii) are valid, in general, for the first 

order and buckling/vibration analysis of open section elements providing further simplification [125].  

 

 
Figure 3.1: The GBT coordinate system and its corresponding displacements.  

 
According to GBT the displacement field is represented such that x and s middle plane 

coordinates are separated. Each displacement field component is expressed as a sum of an arbitrary 

number of products of two functions: one function is defined on the cross-section’s middle line 

domain and the other function is defined along the member’s length. Therefore, the displacements u, 

v and w are expressed as follows:  
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(3.1) 
 

 
where: k is the number of the deformation mode; 

uk(s), vk(s), wk(s) is the warping, transverse and, respectively flexural components of the middle 

line displacement profile corresponding to deformation mode k; 

          �k(x) the modal amplitude function defined with respect the bar’s longitudinal axis. 

The presence of the derivative of the modal amplitude function �k,x(x) in the warping component 

of the displacement field uk(s) is a consequence of Vlasov’s hypothesis, namely the shear membrane 

strains are null �
xs
M=0 .  

GBT is different from other analysis methods because the degrees of freedom consist of cross-

section deformation modes which display mechanically meaningful configurations. Each deformation 

mode is expressed mathematically by a warping, a transverse and a flexural displacement field defined 

in the cross-section middle line domain (i.e. uk(s), vk(s) and wk(s)), (see Eq. (3.1)). Depending on the 

nature of displacement or deformation involved, the GBT cross-section deformation modes are 

divided into the following categories: 

(i) Conventional deformation modes, which fulfill Vlasov’s hypothesis. This category 

represents accurately the deformation produced by the structural element in different situations and 

includes the following types of deformation modes:  

a) Global modes, represented by the following rigid body deformation modes: axial extension, 

major and minor axis bending and torsion. These deformation modes involve both in-plane and out-

of-plane displacements.  

b) Distortional modes, represented by quasi-rigid body displacements of parts of the cross-

section. This type includes the flexural deformation of some plates.  

c) Local modes, given only by flexural displacements of the cross-section walls without warping 

or transverse displacements. 

(ii) Shear deformation modes, which involve non-null shear strains. 

(iii) Transverse extension modes, which involve membrane extension of the walls.  

For any given cross-section it is possible to define an infinite number of deformation modes for 

each category, except for global modes, which are always 4, and distortional modes whose number 

depends on the cross-section’s geometry.  

GBT is applied in two steps: (i) the cross-section analysis and (ii) the structural analysis. In the 

cross-section analysis the deformation modes are identified and the corresponding modal properties 

are determined. The performance of this step does not depend on the bar’s length, on the boundary 
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conditions or on the applied loads. In the structure analysis the system of differential equilibrium 

equations is assembled and the solution is determined. In this step the geometric properties of the 

cross-section, the material properties, the size of the structure, the boundary conditions and the applied 

loads are known.  

3.2.1. The Variation of Strain Energy  

The GBT formulation starts from the kinematic relations which have the following expressions: 

(i) For the linear terms, by applying hypothesis (ii) and (iii) (�
xs
M.L=�ss

M.L=0): 
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(ii) For the non-linear terms: 
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The bending terms (�xx

B.NL=�
xs
B.NL=0) and the terms involving products of warping function 

derivatives (u,x or u,s) from Eq. (3.3) can be neglected for small strains and moderate rotations.  

The plane state of stress for the bending terms and the uniaxial stress state for the membrane 

term, for each cross-section wall, yields the following constitutive relations: 
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(3.4) 
 

 
where: E is the Young modulus of elasticity; 

G is the transversal modulus of elasticity; 


 is Poisson’s ratio; 

M is the membrane component; 

B is the bending component; 

�xx
M.L is the linear membrane normal stress component along the member’s longitudinal axis; 

�xx
M.L is the linear membrane strain component along the member’s longitudinal axis; 
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�xx
B.L, �ss

B.L, �xs
B.L are the linear bending normal stress components along the member’s longitudinal 

axis and, respectively along the cross-section’s middle line and the linear bending shear stress 

component;  

�xx
B.L, �ss

B.L, �
xs
B.L are the linear bendingstrain components along the member’s longitudinal axis 

and, respectively along the cross-section’s middle line and the linear bending shear strain component; 

According to the linear stability analysis concept, the linearization of the variation of the strain 

energy along the fundamental path has the following mathematical expression: 

 

( ). . . . . . . . 0 . 0 .M L M L B L B L B L B L B L B L M NL M NL

xx xx xx xx ss ss xs xs xx xx xs xs

L s t

W dzdsdxσ ε σ ε σ ε τ γ σ ε τ γ∂ = ∂ + ∂ + ∂ + ∂ + ∂ + ∂���  
(3.5) 

 
where: �xx

0 , �xs
0  are the pre-buckling normal stress (along the member’s longitudinal axis) and the pre-

buckling shear stress, respectively; 

�xx
M.�L, �

xs
M.�L are the non-linear longitudinal membrane strainand the membrane shear strain 

components, respectively. 

By introducing the kinematic relations (i.e. strain – displacement relations) from Eq. (3.3) and 

the constitutive relations (i.e. stress – strain relations) from Eq. (3.4) into Eq. (3.5) and performing 

the integrations with respect to the thickness and cross-section’s middle line, the variation of strain 

energy has the following form: 
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(3.6) 

 
where: Cik

1  is the linear stiffness tensor associated with generalized primary warping;  

Cik
2  is the linear stiffness tensor associated with generalized secondary warping; 

Dik
1  is the linear stiffness tensor associated with generalized torsion; 

Dik
2  is the linear stiffness tensor associated with generalized flexural Poisson’s effect; 

Bik  is the linear stiffness tensor associated with generalized transversal bending; 

Wj is the resultant of the pre-buckling normal stresses associated with mode j. 

X�ik
�  is the geometrical stiffness tensor associated with normal stresses; 

Wj,x is the resultant of the pre-buckling shear stresses associated with mode j. 

X�ik
�  is the geometrical stiffness tensor associated with shear stresses; 

j=1…4 is the global deformation mode having the following meanings: j=1 is axial extension, 

j=2 is bending with respect the major axis, j=3 is bending with respect the minor axis and j=4 is 

torsion.  
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In the classic GBT formulation for bars with prismatic cross-section, matrices C and D are 

symmetrical. Therefore, the linear stiffness tensors Cik and Dik may be defined as follows: 
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The linear and geometrical stiffness tensors are determined by integrating with respect the 

cross-section’s middle line. For members with prismatic cross-section the linear stiffness tensors are 

determined by the following mathematical expressions [125]: 
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The geometrical stiffness tensors yield from the following expressions [125]: 
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where: t is the thickness of the cross-section’s wall; 

Cjj is the cross-section’s stiffness associated with deformation mode j; 

aj is a coefficient whose value depends on the deformation mode j. Therefore, aj=0 for j=1 and 

aj=1 for j=2…4. 

3.2.2. The Cross-section Analysis 

The cross-section analysis in the GBT formulation for prismatic bars with open unbranched 

cross-section begins with the discretization of the bar’s cross-section into segments. A cross-section 
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composed of n segments consists in n+1 natural nodes, which are the nodes at the walls ends, and m 

intermediate nodes plus the two free-end nodes, which are endowed with a flexural degree of 

freedom.. Figure 3.2 presents an example of discretization for a lipped channel cross-section. 

According to Figure 3.2 the cross-section has 6 natural nodes (represented by orange circles) and 5 

intermediate nodes (represented by magenta rombus).  

 

 
Figure 3.2: The discretization of a lipped channel section. 

 
Generally, each segment should have at least one intermediate node in order to obtain accurate 

results. . The natural nodes are indispensable in the GBT analysis, while the intermediate nodes are 

included in case of the local flexural, membrane shear and membrane transverse extension buckling 

of the walls.  

The following step is to determine the cross-section displacement field components represented 

by the uk(s), vk(s) and wk(s) functions. Firstly, unit warping displacements uk=1, k=1…n+1 are 

imposed at the cross-section’s natural nodes, while unit flexural displacements wk=1, 

k=n+2…n+m+3 are inserted at the intermediary nodes and at the free end nodes. Thus, there are n+1 

elementary warping functions uk(s) and m+2 elementary flexural functions wk(s). The elementary 

warping functions have linear variation between consecutive nodes.  

The elementary flexural functions wk(s) fulfill automatically Vlasov’s hypothesis because 

u=v=0. The nodal compatibility between the transverse membrane displacements v and the flexural 

displacements w is achieved by forcing the cross-section to deform in its own plane due to the 

application of the elementary warping functions uk(s). By imposing membrane and flexural 

displacements relative rotations occur between adjacent segments which break the nodal 

compatibility. Thus, it is necessary to determine the nodal transverse bending moments which ensure 

rotation compatibility at nodes. The nodal transverse bending moments are obtained by solving the 
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static indeterminate folded plate problem either by applying the force method or the displacement 

method.  

After the equilibrium and compatibility conditions are ensured, the cross-section displacement 

field is determined. The components of the cross-section displacement field have the following forms: 

(i)  uk(s) are linear functions; 

(ii) vk(s) are constant; 

(iii) wk(s) are cubic functions.  

In the following step the GBT system of buckling equations is written in the matrix form as 

follows: 

 
0

, , , 0xxxx xx j j xxC D B W Xφ φ φ λ φ− + − =  
(3.10) 

 
Knowing the cross-section displacement field, the C, D, B stiffness matrices and the Xj 

geometric matrix are assembled. These matrices are completely populated and their components do 

not have an obvious physical meaning. Therefore, the GBT matrices must be simplified through 

simultaneous diagonalization. The assembly and diagonalization of the stiffness and geometric 

matrices is done in several steps which are detailed in Schardt’s reference [5]. The following section 

presents briefly the diagonalization process of the GBT matrices and the interpretation of the results.  

The diagonalization process requires the solution of eigenproblems which lead to the 

identification of the vectors corresponding to cross-section deformation modes. First the 

diagonalization of the C and B matrices is performed by solving the eigenproblem with the following 

matrix equation: 

 
( ) 0k kB C dλ− ⋅ =  (3.11) 

 
where: �k is the eigenvalue corresponding to deformation mode k; 

          dk is the eigen vector corresponding to the eigenvalue �k associated with deformation mode k.  

By solving the eigen value problem from Eq. (3.11), n+m+3 eigenvalues result with the first 

four being null. The eigenvectors dk are assembled in a matrix UI. The eigenvalues are sorted in 

ascending order, while the eigenvectors dk of the matrix UI are permuted according to their 

corresponding eigenvalue. Figure 3.3 presents the patterns of the first diagonalization of  B and C 

matrices and the transformation of the matrix UI.  
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Figure 3.3: The diagonalization patterns of B and C matrices and the transformation of the modal matrix UI. 

 
The eigenvalues resulted from Eq. (3.11) have the following physical meaning [104]: 

(i) �k=0, k=1…4 (4 eigenvectors dk) are associated with cross-section rigid body deformations, 

namely axial extension, bending with respect to the major axis, bending with respect to the minor axis 

and torsion; 

(ii) �k>0, k=5…n+1 (n-3 eigenvectors dk) are associated with cross-section deformation 

described by warping and fold-line displacements. These are also known as distortional modes. 

(iii) �k>0, k=n+2…n+m+3 (m+2 eigenvectors dk) are associated with cross-section in-plane 

deformation without warping and fold-line displacements, but with significant wall bending, the so-

called local modes.  

The second diagonalization involves the determination of the four rigid body deformation 

modes. Therefore, the stiffness matrices C and D are transformed such that their size is 4x4 resulting 

the matrices C4x4 and D4x4. The eigenproblem is solved with the following equation: 

 

( )4 4 4 4 0x k x kD C dλ− ⋅ =  
(3.12) 

 
By solving Eq. (3.12) four eigenvalues result. Three out of the four determined eigenvalues are 

null. The first four eigenvectors dk of the matrix UII are sorted according to their corresponding 

eigenvalue �k. Figure 3.4 presents the diagonalization pattern of matrix D4x4 and the transformation of 

the matrices C4x4 and UII. 
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Figure 3.4: The diagonalization pattern of D4x4 matrix and the transformation of C4x4 and UII matrices. 

 
The eigenvalues determined by Eq. (3.12) are interpreted in the following manner [104]:  

(i) �k=0, k=1…3 (3 eigenvectors dk) is associated with cross-section rigid body displacements 

without twisting rotation, namely extension, bending with respect to the major axis and bending with 

respect to the minor axis deformation modes. 

(ii) �4>0 corresponding to eigenvector d4 is associated with the cross-section rigid body 

displacement with twisting rotation, namely the torsion mode. 

In the last diagonalization process the bending and the axial extension modes are determined. 

The stiffness matrix C is transformed such that its size is 3x3 and the stiffness matrix K (K�X), with 

the same size, is assembled. The last eigenproblem is solved using the matrices C3x3 and K3x3 as 

follows:  

 

( )3 3 3 3 0x k x kK C dλ− ⋅ =  
(3.13) 

Therefore, by solving Eq. (3.13) three eigenvalues �k result. One of the determined eigenvalues 

is null. The first three eigenvectors dk are sorted according to their corresponding eigenvalue into the 

matrix UIII. Figure 3.5 shows the diagonalization pattern of matrix K3x3 and the transformation of the 

matrices UIII and C3x3.   
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Figure 3.5: The diagonalization pattern of K3x3 matrix and the transformation of UIII and C3x3 matrices.  

 
The eigenvalues yielded from Eq. (3.13) have the following meaning [104]: 

(i) �1=0 corresponding to eigenvector d1 is associated with cross-section rigid body 

displacement without in-plane deformations, namely the axial extension mode. 

(ii) �k>0, k=2, 3 (eigen vectors d2, respectively d3) is associated with cross-section rigidy body 

displacement with in-plane deformations, namely the bending modes about central principal axes.  

3.2.3. The Structural Analysis 

The GBT structural analysis is simpler, because it involves procedures known in structural 

analysis problems. The structure analysis begins with the assembly of the matrices UI, UII and UIII 

into the global transformation matrix U� having the size (n+m+3)x(n+m+3). Each column of the 

matrix U� corresponds to one of the n+m+3 orthogonal deformation modes. After the global 

transformation matrix U�  is assembled, the stiffness matrices C, B, D and the geometric matrix Xj, all 

of them fully populated are transformed as following: 

 
T

T

T

T

j j

C U CU

D U DU

B U BU

X U X U

=

=

=

=

� � �

� � �

� � �

� � �

 

 
 

(3.14) 

 
The elements of the transformed matrices C�, D�, B� and X�j are the cross-section modal mechanical 

properties as following: the global deformation modes represented by axial extenstion, bending and 

torsion, the distorsional deformation modes and the local deformation modes. After the transformation 
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of the stiffness and geometric matrices, the GBT system of equilibrium equations has the following 

modal form: 

 
0

, , , 0xxxx xx j j xxC D B W Xφ φ φ λ φ− + − =� � � � � �� � � �  
(3.15) 

   
In case of the geometric matrix X�j there are two situations:  

(i) If the elements of matrix X�j outside the main diagonal are null, then the GBT system of 

equilibrium equations is uncoupled. This case is specific to axially compressed structures. This is not 

true, matrix D is not diagonal. Only for rigid-body modes this holds. 

(ii) If the elements of matrix X�j outside the main diagonal are non-null, then the GBT system of 

equilibrium equations is coupled. This situation occurs in structures subjected to torsion or bending.  

One of the advantages of GBT is that an arbitrary number of deformation modes can be 

considered. The number of selected deformation modes is necessary to solve the system of 

equilibrium equations associated with them. The resulted buckling mode is expressed as a linear 

combination of the respective deformation modes. The solution of the GBT differential system of 

equations may be solved as follows: 

(i) By exact methods, where analytical expressions are obtained. These analytical expressions 

are solutions of the homogeneous differential equations. The exact solutions may only be determined 

in case of simply supported bars and they are expressed as sinusoidal functions. In case of bars with 

other types of boundary conditions (other than simple supports), to determine exact solutions no more 

than 2 deformation modes can be inserted in the analysis.  

(ii) By aproximative methods, which involve numerical discretization methods as Finite 

Difference Method (FDM) or Finite Element Method (FEM). Therefore aproximative solutions are 

determined for  bars with any type of boundary conditions.  

3.3. Generalized Beam Theory for Conical Shells  

The following section presents the GBT adapted for isotropic conical shells with circular cross-

section. Let us consider the conical shell from Figure 3.6 with length L, thickness t and angle of the 

semi-vertex 	. Also, the xg, yg, zg global coordinate system and the x, �, z local coordinate system are 

considered, where x��0, L cos	� � is the meridional coordinate, ���0,2� is the circumferential 

coordinate and z��-t 2� , t 2� � is the normal coordinate. The structure’s displacements with respect the 

local coordinate system are the following: u is the displacement on meridional direction, v is the 

displacement on circumferential direction and w is the displacement on normal direction.  
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Figure 3.6: The geometry of the conical shell. 

 

3.3.1. Past Research  

3.3.1.1. The Kinematic Relations 

As in the case of TWBs with prismatic cross-section, the GBT formulation for circular conical 

shells begins from the kinematic relations which, in this case, have the following pattern: 

 

{ } { } { } { } { }M B M zε ε ε ε χ= + = +  (3.16) 

 
where: {�M}, {�B} are membrane, respectively bending strains; 

          {�} is the vector of curvature variation with respect the middle surface.  

According to Love – Timoshenko theory [44], the kinematic relations have the following 

mathematical expressions in case of conical shells, with the following linear and non-linear 

components: 

 
2 2
, ,. .

, 2 2
x xM M L M NL

xx xx xx x

w v
uε ε ε

� �
= + = + +� �� �

� �
 

2 2

, , ,. . 1 1

2 2
M M L M NL

v vc w v wcwc us

r r r r r

θ θ θ
θθ θθ θθε ε ε

� �− +� � � � � �
= + = + + + +� �� � � � � �

� �� � � � � �� 

 

, , , , , ,. .
,

x x xM M L M NL

x x x x

u w w vw c v vvs
v

r r r r r

θ θ θ
θ θ θγ γ γ

� � � �
= + = + − + − +� � � �

� � � �
 

,xx xxwχ =−  

, , ,

2 2

xw w s v c

r r r

θθ θ
θθχ = − − +  

 
 
 

(3.17) 
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, , ,
2

2
2

x x

x

w w s vc vs

r r r r

θ θ
θχ

� �� �
= − + + −� �� �

� �� 
 

 
where: s=sin	 and c=cos	.  

The last term of the non-linear shear strain �
x�
M.NL is often neglected depending on the nature of 

the applied load, while the last term of the non-linear hoop strain ���
M.NL is always neglected [45]. In 

the case studies presented in [4] both terms were neglected. The last terms us/r and –vs/r of the linear 

membrane hoop strain ���
M.L and, respectively, of the linear membrane shear strain �

x�
M.L, were taken 

into account, but it was noticed that there were no significant effects in any of the analysed numerical 

examples. Therefore it is recommened to neglect them. According to GBT, the u, v and w 

displacements of the middle surface are expressed as summation of products between orthogonal 

functions: 

 

( ) ( ) ( )
1 1 1

, , , , ,
n n n

k k k

k k k

u u x v v x w w xθ θ θ
= = =

= = =� � �  (3.18) 

 
where: n is the number of cross section deformation modes.  

The terms of Eq. (3.18) are then expressed, according to GBT, as products of orthogonal 

functions: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,,

,

,

k k k x

k k k

k k k

u x u r x x

v x v x

w x w x

θ θ φ

θ θ φ

θ θ φ

=

=

=

 

 
(3.19) 

 
where: uk(�), vk(�), wk(�) are the cross-section warping, transverse and, respectively, normal 

displacement componets of the conical shell’s mid-line cross-section corresponding to deformation 

mode k;  

�k(x) are the modal amplitude functions defined with respect to the longitudinal axis.  

3.3.1.2. The Shell-Type Deformation Modes 

The classical GBT assumes that the linear membrane transverse strains ���
ML and the linear 

membrane shear strains �
x�
ML are null. In the case of conical shells, if the terms us/r and –vs/r are 

neglected, then the vk and wk cross-section displacements may be expressed with respect to the 

meridional displacement uk as follows: 

 

, ,
,

k k

k k k

v u
v u w

c c

θ θθ
θ= − = − =  

(3.20) 
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In the case of circular closed sections there are two sets of trigonometric functions used also in 

references [45], [118], [119] and [120]:   

 
( )

( ) ( )

sin , 2, 2,4,6,...,

cos , 1 2, 3,5,7,..., 1
k

m m k k n
u

m m k k n

θ

θ

� = =�
= �

= − = +�

 

(3.21) 

 
where: n is the number of deformation modes considered.  

In case of cylindrical bars with elliptical cross-section, the sets of trigonometric functions used 

in reference [121] were different from the ones in Eq. (3.21) and they may be applied to conical shells 

with elliptical cross-section in other case studies.   

For a given number of m circumferential waves there are two similar deformation modes having 

a different order k. Therefore, in the buckling analysis of uniformly compressed structures, there is 

always a set of two buckling modes with equal critical buckling loads. The independent trigonometric 

functions from Eq. (3.21) define the shell-type deformation modes. Figure 3.7 shows the cross-section 

in-plane configurations of the first 12 shell-type deformation modes.   

 

 
Figure 3.7: The shell-type deformation modes.  

 

3.3.2. Personal Contributions  

3.3.2.1. The Shear Deformation Modes 

Initially it was assumed that the shell-type deformation modes can describe with enough 

accuracy the buckling modes of structures with circular cross-section. In the numerical examples 

presented in the thesis there were situations when Vlasov’s hypothesis �
��
���� led to results with 

significant errors. Therefore two new deformation mode types were introduced as follows: 

(i) “u” shear deformation modes, where the warping displacement uk is identical to the one 

described by the shell-type deformation modes (see Eq. (3.21)), while the rest of the cross-section 

displacements are null vk=wk=0. Figure 3.8 shows the “u” shear deformation mode of order k=4.  
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Figure 3.8: “u” shear deformation mode (k=4).  

 
(ii) “v” shear deformation modes, where the hoop displacement vk is identical with the one 

described by the shell-type deformation modes (see Eq. (3.20) and (3.21)), while the rest of the cross-

section displacements are null uk=wk=0. 

3.3.2.2. The Additional Deformation Modes 

In most cases the shell-type deformation modes, along with the shear deformation modes, can 

describe quite accurately the buckling modes of TWBs with circular cross-section and conical shells. 

However, for performing a first order analysis capable of determining rigorously the pre-buckling 

stresses and of taking into account the deformation of the structural member on the circumferential 

direction, additional deformation modes must be inserted as well. 

a. The Additional Deformation Modes of Conical Shells under Axial Compression  

In the case of axial compression, the additional deformation modes are the axial extension, the 

axisymmetric extension and the torsion and they are illustrated in Figure 3.9. Vlasov’s and the null 

membrane transverse extension hypotheses (�
x�
ML=���

ML=0) used to determine the shell-type 

deformation modes are no longer valid. In case of each additional deformation mode, the cross-section 

displacements are constant. In the case of circular cylindrical bars, the cross-section displacements 

have the following values according to Silvestre [120]: 

(i) The axial extension mode: 

 
1, 0 , 0

e e e
u v w= = =      (3.22) 

 
(ii) The axisymmetric extension mode: 

 
0 , 0 , 1

a a a
u v w= = =      (3.23) 

 
(iii) The torsion mode: 

 
0 , , 0

t t t
u v r w= = =      (3.24) 
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Figure 3.9: The additional deformation modes: a) axial extension, b) axisymmetric extension and c) torsion. 

 

b. The Additional Deformation Modes of Conical Shells under Bending 

In the case of conical shells under bending, the following deformation modes are used in the 

first order analysis:  

(i) Mode 1, where the cross-section displacements have the following values: 

 
1 1 1sin( ) 0 0u v wθ= = =   (3.25) 

  
 (ii) Mode 2, where the cross-section displacements are as follows: 

 
2 2 20 cos( ) 0u v wθ= = − =   (3.26) 

  
(iii) Mode 3, with the following cross-section displacements: 

 
3 3 30 0 sin( )u v w θ= = = −  (3.27) 

 

3.3.2.3. The Variation of Strain Energy  

Let us consider the following expression of the linearization of the strain energy variation: 

 

( )0 0 0 0L L L L L L NL NL NL

xx xx x x xx xx x x

L t

W dzrd dxθθ θθ θ θ θθ θθ θ θδ σ δε σ δε τ δγ σ δε σ δε τ δγ θ= + + + + + =� � ��  (3.28) 

 
where: �xx

0 , ���
0 , �x�

0  are the pre-buckling normal meridional stresses, normal hoop stresses and, 

respectively shear stresses.  

The constitutive relations are the following: 

 

11 12

21 22

33

xx xx

xx

x x

Q Q

Q Q

Q

θθ

θθ θθ

θ θ

σ ε ε

σ ε ε

τ γ

= +

= +

=

 

 
(3.29) 

 
where: Q11=Q22=E/(1-
2), Q12=Q21=
Q11 and Q33=G; 

          E, G is the Young elasticity module, respectively the transverse module; 

          
 is Poisson’s coefficient.  
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By using the kinematic relations from Eq. (3.17) and the constitutive relations from Eq. (3.29) 

and performing the integrations with respect the thickness and the cross-section’s circumference, the 

following expression of the variation of the strain energy results: 

 

( )

1 2 2
, , , , , , ,

, , , , , , , ,

ik k xx i xx ik k i xx ik k i xx ki k xx i ik k i ik k i x ki k x i

x

L ik k x i xx ki k xx i x jik k x i x jik k i jik k i x k x i

C D D D B G G
W dx

H H X X Xσ σθ τ

φ δφ φ δφ φ δφ φ δφ φ δφ φ δφ φ δφ
δ

φ δφ φ δφ φ δφ φ δφ φ δφ φ δφ

� �+ + + + + + +
� �=
� �+ + + + +� �
�  

 
(3.30) 

 
where: Cik, Dik

1 , Dik
2 , Bik, Gik, Hik are the linear stiffness tensors which describe the general warping, 

twisting and the cross section distorsion; 

Xjik
�x , Xjik

��, Xjik
�  are geometrical stiffness tensors which take into account the second order effects 

of the pre-buckling meridional, hoop and, respectively shear stresses associated to deformation mode 

j.  

The mathematical expressions of these matrices are as follows: 

 

( )2
11 11 i kiik k r w wC A u u D rdθ= +��  (3.31) 

 

( ) ( )( )2
11 12 22 33 , ,
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2

, ,
22 332
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D rdw v c w v cww s
D D
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θ θ

θ θ
θ

� �+ + + + + +
� �
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� �

�  

 
(3.32) 

 

( ) ,
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,2
12 2

i

i i k k

i

ik

v
v w c u

w
D A D w rd

r

θ
θ

θθ θ
−� �

+ +� �
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(3.33) 
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(3.34) 
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(3.35) 

 

( )11 12 12
i k

i kik

w w s
H A A u u s

r
D rdθ

� �
+ +� �
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�  

(3.36) 
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( )0
i k i k

x
xxjik w vX w v trdσ σ θ= +��  (3.37) 

 

, ,0 i i k k

jik

v c v cw w
X trd

r r

θ θσθ
θθσ θ

− −� �
� �
� �

= ��  
(3.38) 

 

,0 k k

ixjik

v cw
X w trd

r

θτ
θτ θ

−� �
� �
� �

= ��  
(3.39) 

 
where: Aij=Qijt, Dij=Qijt3/12.  

If the terms –vs/r and us/r of the kinematic relationships from Eq. (3.17) are taken into account, 

then A�ij=Aij, else A�ij=0.  

In case of the shell-type deformation modes and shear deformation modes, Eq. (3.20) may be 

used to determine the tensors mentioned previously by using only the warping displacement uk. The 

trigonometric functions which describe the warping displacements uk (see Eq. (3.21)) fulfill 

simultaneously the orthogonality conditions which appear in the mathematical expressions of the 

tensors in the C, D1, D2, B, G, H and X stiffness matrices:  

 

, , , ,0, 0, 0, .k i k i k iu u d u u d u u d etcθθ θθ θθθθ θθ θ θ= = =� � �� � �  (3.40) 

 
Thus, diagonal tensors result for the shell-type deformation modes and, respectively for shear 

deformation modes (i.e. “u” and “v” shear modes). However, between these two categories of 

deformation modes there is coupling, but only for the deformation modes with the same order k. For 

example, if for the stiffness matrix C there are n shell-type deformation modes with index k and, also, 

n shear deformation modes, by introducing equations (3.20) and (3.21) in Eq. (3.31), the following 

mathematical expressions result: 
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(3.41) 

 
where the warping displacement us of “u” a shear deformation mode is identical to the warping 

displacement uk of the shell-type deformation mode. In C matrix from Eq. (3.41) it can be remarked 

that there is a coupling between shell-type deformation modes and “u” shear deformation modes. 

Similar couplings exist for all the stiffness matrices. These couplings are presented in detail in Annex 

III. However, the shell-type deformation modes and the shear deformation modes are not coupled 

with the additional deformation modes presented in Section 3.3.2.3. 
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The only practical case where the buckling modes are completely uncoupled is in the case of 

axially compressed conical shells, when only the shell-type deformation modes are considered. This 

is due to the fact that the only non-null geometric matrices X1
�x and X1

�� are diagonal. Also, the pre-

buckling normal stresses �xx
0  and ���

0  are constant along the cross-section, while the pre-buckling shear 

stresses �x�
0  are null.   

By introducing equations (3.20) and (3.21) in equations (3.32) – (3.39) for each stiffness matrix 

result analytical expressions similar to the ones from reference [4] in case of shell-type deformation 

modes. The complete list of the analytical expressions is given in Annex I. Because the radius r is 

variable along the member’s length, the elements of the stiffness matrices are no longer constant with 

respect to the longitudinal axis. Therefore, the elements of the stiffness matrices from the expression 

of variation of strain energy need to be integrated with respect to the longitudinal axis.  

In the case of axially compressed conical shells, presented in this thesis, the deformations 

resulting from first order analyses are described by the coupling of the first two additional deformation 

modes: the axial extension (e) and the axisymmetric extension (a). Because there are no shear stresses 

in this case, the variation of the strain energy for the first order analysis has the following expression: 

 

( ), , , ,
L L L L

xx i xx k i k

L t

W dzrd dxθθ θθδ σ δε σ δε θ= +� � ��  (3.42) 

 
where i, k may be any of the deformation modes e or a. 

By introducing equations (3.22) and (3.23) together with the kinematic and constitutive 

relationships from equations (3.17) and (3.29), the variation of the strain energy has the following 

form:  
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(3.43) 

 
where: Fik is the linear stiffness tensor which describes the coupling between the axial extension and 

axisymmetric extension modes. The mathematical expression is as follows: 

 

11 2ik

sc
F A rd

r
θ= ��   

(3.44) 

 
The stiffness matrices, having the size 2x2, are determined by integration with respect to the 

cross-section thickness and circumference directions and they have the following mathematical 

expressions:  

 (i) For axial extension mode: 
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(3.45) 

 
(ii) For axisymmetric extension mode: 

 
2

1 211
11

2
11

12

2
2 , , 0

2
, 2 , 0

aa aa aa

aa aa aa

A s
C D r D D

r

A c
B H D s F

r

π
π

π
π

= = =

= = =

 

 
 
(3.46) 

 
(iii) For the coupling between the axial extension and axisymmetric modes: 
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(3.47) 

 

3.4. Conclusions 

The GBT analysis is performed in two steps: (i) the cross-section analysis, which establishes 

the fundamental deformation modes and the modal properties and (ii) the structural analysis, which 

determines the buckling modes and the critical buckling loads. The cross-section analysis has several 

steps which consist in the diagonalization of the cross-section stiffness matrices. These steps are 

described in detail in the literature. The structural analysis, where the geometrical and material 

properties of the analysed structure are known, consists in the determination of the solution of the 

GBT system of equilibrium equations (4th order differential equations) by exact methods or by 

approximative methods.  

Chapter III presented the GBT formulation for isotropic conical shells. The formulation begins 

from the kinematic relations of Love – Timoshenko theory [44] (see Eq. (3.17)). In the case of conical 

shells three types of deformation modes were identified: (i) shell-type deformation modes, described 

by two sets of independent trigonometric functions (see Eq. (3.21)), where for a number of m 

circumferential waves there are two similar deformation modes with distinct k order, (ii) shear 

deformation modes entailed in two categories: “u” shear deformation modes (uk�0, vk=wk=0) and “v” 

shear deformation modes (vk�0, uk=wk=0) and (iii) additional deformation modes: axial extension, 

axisymmetric extension and torsion, which are necessary in a first order analysis.  

As in the case of GBT for prismatic bars, in the GBT for conical shells the variation of the strain 

energy is formulated. After the integration with respect to the cross-section thickness and 

circumference, the stiffness and geometric matrices are obtained. Because conical shells have variable 
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cross-section, the stiffness and geometric matrices are also integrated with respect the longitudinal 

axis (see Eq.  

(3.30)). In the case of axially compressed conical shells, the deformation of the structure is 

described in the first order analysis by a coupling between the axial extension and axisymmetric 

extension deformation modes. Thus, by integrating the variation of the strain energy with respect to 

the cross-section thickness and circumference result stiffness matrices having a size 2x2 size (see Eq. 

(3.43)).  
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Chapter IV 
The GBT-based Finite Element Formulation 

4.1. Introduction 

The GBT buckling analysis method for thin walled structures decomposes the buckling mode 

into a linear combination of fundamental deformation modes and therefore the degree of modal 

participation is easily assessd in coupled instabilities. A GBT analysis consist in two steps: the cross 

section analysis, where the deformation modes and the modal properties are established, and the 

structural analysis.  

The GBT structural analysis corresponds solving a system of 4th order differential equations 

having the unknowns funcitons �k(x) which correspond to the modal amplitude functions (see Eq. 

(3.1)). By solving the GBT system of differential equations the buckling modes and the associated 

buckling loads are obtained.  

In case of cylindrical bars, Silvestre [120] determined the solution of the GBT system of 

differential equations using the Galerkin method. According to the results in case of pinned bars, both 

globally and locally, with end sections free to warp, the Galerkin method is extremely advantageous. 

The modal amplitude functions �k(x) have sinusoidal form. In case of conical shells with circular cross 

section, Nedelcu [4] solved the GBT system of differential equations by the numerical method Runge-

Kutta, namely the 4th order Lobatto IIIA colocation method [122]. The method proved to be unstable 

when  the number of deformation modes included in the analysis was large and it has limits regarding 

structures with arbitrary loads and boundary conditions.   

The following chapter presents the GBT-based Finite Element (FE) formulation implemented 

to determine the solution of the GBT system of differential equations for isotropic conical shells. The 

Finite Element Method (FEM) was chosen because structures with different loads and boundary 

conditions may be easily analysed. The GBT based FE formulation was used in other papers such as 

[109], [110] or [107], presented in Section 2.5.2.  

4.2. General Aspects of the Finite Element Formulation 

The GBT system of differential equations may be solved by analytical methods for simple 

loading and boundary conditions and by approximate methods such as the Finite Element Method 

(FEM). The Finite Element Method consists in the approximation of any continuous domain into a 

discrete model. This discrete model is made of a finite number of sub-domains called finite elements. 
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In the FEM the problem may be formulated in terms of displacements, strains,  stresses or as 

combination of these three. The most used FEM formulation is the one in displacements [126]. 

For conical shells, the GBT system of differential equations was initially solved, in reference 

[4], by the numerical method Runge-Kutta, namely the 4th order Lobatto IIIA colocation method 

[122], which was implemented as Matlab function bvp4c [6]. The 4th order Lobatto IIIA colocation 

method uses a finite space of solutions of the modal amplitude function �k(x) having the form of n-

degree polynomials and a mesh of points in the range [0, L] named colocation points. From these 

colocation points the solution which fulfills the respective differential equation is selected. 

The initial method had satisfactory results for buckling analyses where the solution was 

determined by a single deformation mode, more exactly in case of axially compressed structures. 

However, the method has a major drawback: the solution, which in this case is the shape of the modal 

amplitude function �k(x), must be guessed initially. In case of axially compressed structures with 

simple boundary conditions this may be done easily by introducting combinations of trigonometric 

functions compatible with the boundary conditions. However, in case of sudden variations of the 

modal amplitude function, if the guessed solution is wrong, then the first eiegenvalue may be lost or 

it could result in non-convergence. This problem occurs in case of coupled instabilities where the 

shear deformation modes may have an unpredictable behavior as it is illustrated in the numerical 

examples in the following chapters. Another difficulty of the Runge-Kutta method is the insertion of 

the boundary conditions, more exactly 4xn boundary conditions, where 4 is the order of the 

differential equations and n is the number of deformation modes.  

Because of the drawbacks of the Runge-Kutta numerical method, a GBT-based FE formulation 

was preferred to solve the GBT system of differential equations in case of conical shells. The GBT-

based FE formulation was applied in other studies such as [109], [110], [107] and Error! Reference 

source not found.. Basaglia [109] used the GBT-based FE formulation for calculating the elastic 

local, distortional and global buckling of TWB frames. The bar finite element used in the analysis 

takes into account the caracteristics of the frame’s nodes and the relationships between the modal 

degrees of freedom of the end section of the connected member and the modal degrees of freedom of 

the respective connection. In reference [110], the GBT-based FE formulation was used for the local, 

distortional and global buckling analysis of the TWB frames in the post-critical domain. Silvestre and 

Camotim [107] used a GBT-based FE formulation for the stability analysis of TWBs with orthotropic 

“C” section made of a composite material reinforced with fiber carbon polymers. Bebiano et al. 

Error! Reference source not found. used a GBT-based FE formulation for the buckling analysis of 

TWBs subjected to non-uniform bending. 
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In FEM the insertion of any type of boundary conditions is a simple procedure. Regarding 

computational efficiency, unlike FEM, the Runge-Kutta numerical method doesn’t operate with 

classical degrees of freedom. The approximate solution is a continuous function having the form of a 

cubic polynomial for each sub-range of the mesh along the length of the structure. The number of 

points of the mesh may be approximated as FEM degrees of freedom. In the following case studies, 

the number of points of the mesh has the same magnitude order as the number of FEM degrees of 

freedom. To obtain convergence, the size of the mesh had to be iteratively adapted. This is the reason 

why FEM is a faster analysis method.  

In this thesis the GBT-based FE formulation initially developed for prismatic bars ([109], [110], 

[107] and Error! Reference source not found.) was adapted for structures with circular cross section 

and, at the same time, with variable cross section along the longitudinal axis. This formulation was 

applied for both the first order analysis and the buckling analysis. 

4.3. The Algorythm of the Finite Element Formulation  

In the case of conical shells, the GBT-based FE formulation, initially applied for TWBs with 

prismatic cross-section ([109], [110], [107] and Error! Reference source not found.), was adapted 

for structures with circular cross section and, at the same time, with variable cross section with respect 

to the member’s longitudinal axis. The GBT-based FE formulation starts from the variation of the 

strain energy, given by Eq. (3.43), in the first order analysis and, respectively by Eq.  

(3.30), for the buckling analysis. Also, the formulation in displacements is used which means 

that the problem’s unkwowns are the amplitudes of the deformation modes at the element nodes. The 

finite elements used in the formulation are bar FE with two nodes and 4 degrees of freedom (DOFs) 

for each deformation mode, i.e. 2 degrees of freedom for each node, for each deformation mode. In 

case there are n deformation modes, then one finite element has 4n DOFs, i.e. 2n DOFs for each node.  

The shape functions used to approximate the modal amplitude function �k(x) are the cubic 

Hermite polynomials, which have the following expresions: 
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(4.1) 
 

 
where Le is the length of the finite element and �=x/Le.  

Figure 4.1 presents the shape functions in the range ���0,1�.  
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Figure 4.1: The shape functions. 
 
Each modal amplitude function �k(x) is approximated as follows: 

 

( ) 1 1 2 2 3 3 4 4k x d d d dφ ψ ψ ψ ψ= + + +  
(4.2) 
 

 
where: d1=�k,x(0), d2=�k(0), d3=�k,x(Le) and d4=�k(Le) are the finite element’s degrees of freedom 

(DOFs).  

4.3.1. The GBT-based FE Formulation for the First Order Analysis 

In the first order analysis the the variation of strain energy leads to the following standard matrix 

equation: 

 
( ) ( ){ } ( ){ }e e e

K d f� � =�   (4.3) 
 

 
where [K(e)] is the finite element stiffness matrix; 

        {d(e)} is the displacement vector; 

        {f(e)} is the vector of equivalent nodal forces. 

In the case of axially compressed conical shells, the elements of the finite element stiffness 

matrix are determined as follows: 
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(4.4) 
 

 
The elements of the [K(e)] stiffness matrix are determined with the following formula in case of 

conical shells under bending: 

 
1 2 2

, , , , , ,

, , , , , ,e

ik p xx r xx ik p x r x ik p r xx ki p xx r ik p rik

pr

L ik p r x ki p x r ik p x r xx ki p xx r x

C D D D B
K dx

G G H H

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

� �+ + + + +
= � �

� �+ + + +� �
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(4.5) 
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where i, k may be any of the following deformation modes: (i) axial extension or axisymmetrical 

extension for axially compressed conical shells (see Section 3.3.2.2., a.) and (ii) mode 1, mode 2 or 

mode 3 for conical shells under bending (see Section 3.3.2.2., b.); 

p, r are the finite element’s degrees of freedom (p, r=1...4).  

The difference between Eq. (4.4) and Eq. (4.5) is the presence of the linear stiffness matrix 

tensor Fik which describes the coupling between the axial extension and axisymmetric extension 

modes, a phenomenon only specific to conical shells under axial compression with stress 

concentrations.    

The arbitrary exterior loads that are applied to the conical shell are replaced by equivalent nodal 

forces applied at the finite element’s end sections. The vector of equivalent nodal forces of one finite 

element is obtained with the following expression: 
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(4.6) 
 

 
where f0 and fLe are the equivalent nodal forces distributed at the finite element’s end sections; 

x, y, z are the projections of the equivalent nodal forces on the corresponding local axis. 

Figure 4.2 presents the algorithm of the GBT-based FE formulation for the first order analysis 

as a flow chart. According to Figure 4.2 the variables in the flow chart are as follows: 

K(e) is the finite element mechanical stiffness matrix; 

f(e) is the finite element vector of equivalent nodal forces; 

K is the global stiffness matrix; 

f is the global vector of equivalent nodal forces; 

Kred is the reduced global stiffness matrix after the elimination of the lines and columns 

corresponding to blocked degrees of freedom; 

fred is the reduced global vector of equivalent nodal forces after the elimination of the columns 

corresponding to blocked degrees of freedom; 

dfree is the vector of free displacements; 

dtotal is the vector of total displacements (i.e. of all the finite elements); 

L is the matrix of localization which is used to transfer the degrees of freedom from finite 

element level to global level.  
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Figure 4.2: The flowchart of the GBT-based FE formulation for the first order analysis. 

 

4.3.2. The GBT-based FE Formulation for the Buckling Analysis 

By introducing Eq. (4.2) in Eq.   
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(3.30) and operating the integrations the matrix eigenvalue equation for buckling analysis is 

obtained: 

 
( ) ( )( ) ( ){ } { }0e e e

K G dλ� � � �+ =�  �   
(4.7) 
 

 
where [K(e)], [G(e)] is the finite element linear stiffness and geometric stiffness matrices, respectively; 

        {d(e)} is the displacement vector; 

          � is the loading parameter and eigenvalue corresponding to the displacement vector {d(e)}. �c is 

the lowest eigenvalue and it is called critical buckling parameter.  

The elements of the [K(e)] and [G(e)] matrices are determined with the following expressions: 
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where i, k=2...n; 

         p, r are the finite element’s degrees of freedom (p, r=1...4).  

In Figure 4.3 is the algorithm of the GBT-based FE formulation for the buckling analysis as 

flow chart. According to Figure 4.3 the variables in the flow chart are as following: 

K(e), G(e) are the finite element linear stiffness  and geometric stiffness matrices; 

K, G are the global linear stiffness and global geometric stiffness matrices, respectively; 

Kred, Gred are reduced matrices, after the elimination of the lines and columns corresponding to 

blocked degrees of freedom; 

�b is the eigenvalue; 

{db} is the eigen vector corresponding to the eigenvalue �b; 

�c is the critical buckling coefficient which is the smallest eigenvalue;  

�c, �c are critical stresses.  
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Figure 4.3: The flow chart of the GBT-based FE formulation for the buckling analysis. 

 
Because conical shells have variable cross section, the linear and geometrical stiffness matrices 

are also variable with respect to the member’s longitudinal axis. Therefore, the stiffness matrices from 

equations (4.4), (4.8) and (4.9) are also integrated with respect to the finite element’s length. This is 

an important aspect which distinguishes the proposed FE formulation from the FE formulations for 

prismatic bars. The integration with respect to the finite element’s length was performed by Gauss 

numerical integration. In all the numerical examples presented in the following chapters 4 integration 

points were used. Using a larger number of integration points did not improved the accuracy of the 

solution.  

The first step of this procedure was dividing the analysed structure into a certain number of 

finite elements. The nodal degrees of freedom are identified and are grouped in the vector {d}. The 
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finite element stiffness matrices are assembled to form the global linear stiffness matrix [K] and the 

global geometric stiffness matrix [G]. The same procedure is applied to the vector of equivalent nodal 

forces {f} and to the vector of displacements {d}. In the case of first order analyses, the solution of 

the system of matrix equations [K]·{d}={f} is the displacement vector {d} from which the pre-

buckling strains and stresses are found. The buckling analysis is performed by using the stresses 

determined in the first order analysis and by determining the solutions of the eigenproblem 

[K+�G]·{d}={0}, from which the eigenvalues � and the eigenvectors {db} are found. The lowest 

eigenvalue �c is the critical buckling coefficient. 

 To find the deformed configuration of the analysed conical shell, the modal amplitude 

functions �k(x) are determined by the superposition of the shape functions �i(�) using Eq. (4.2). Then 

the displacements are found by using Eq. (3.19). 

4.4. Conclusions 

The GBT structural analysis leads to a system of 4th order differential equations with the 

unknowns �k(x), which are the modal amplitude functions expressed by Eq. (3.1). The GBT system 

of differential equations may be solved by exact methods or by approximate methods. Exact methods 

are possible in some cases, namely when then analytical solutions are in the form of sinusoidal 

functions. The exact methods have limited practical application and they are recommended only for 

simple loads and boundary conditions. 

In the case of conical shells, the GBT system of differential equations is solved in this work by 

approximate methods, more exactly by the Finite Element Method. Thus, the GBT-based FE 

formulation, initially used for prismatic bars ([109], [110], [107], Error! Reference source not 

found.), was adapted for structures with circular sections and variable section with respect the 

longitudinal axis. In the procedure presented in Chapter IV, the displacement formulation (i.e. the 

unknowns of the problem are the nodal values and derivatives of the mode amplitude functions) was 

used. The finite elements used in the analysis are bar-type elements, with two nodes and 4 degrees of 

freedom (2 degrees of freedom for each node). One important aspect which distinguishes the proposed 

FE formulation from the FE formulations for prismatic bars is the fact that the elements of the linear 

and geometric stiffness matrices vary with respect to the member’s longitudinal axis because conical 

shells have variable cross section. 

For the validation of the proposed formulation, the following chapters present numerical 

examples of first order analysis and buckling analysis of conical shells under different loads and 

boundary conditions.  
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Chapter V 
Axially Compressed Conical Shells 

5.1. Introduction 

In the case of conical shells, the GBT system of differential equations is solved by the Finite 

Element Method (FEM). Therefore, the GBT-based FE formulation, initially applied to prismatic bars 

([109], [110], [107], Error! Reference source not found.), was adapted for structures with circular 

cross section and variabile cross section with respect the longitudinal axis. To validate the proposed 

formulation several case studies were performed. The case studies involved conical shells under 

different loads and boundary conditions. The proposed procedure was implemented in a Matlab code 

[6] and the results were compared to the results determined by Shell Finite Element Analysis (SFEA). 

The SFEA analyses were performed in Abaqus [7] with S4 rectangular shell finite elements. The 

Abaqus models for conical shells have a regular mesh along the cross section, while along the length 

of the structure the size of the mesh varies from 5 mm at the top radius to 50 mm at the bottom radius.  

This chapter presents the case of axially compressed conical shells. Therefore, let us consider 

the conical shell from Figure 5.1. The conical shell is made of steel: E=210 GPa, 
=0.3. In the case 

of axially compressed conical shells two situations were considered: conical shells with constant 

thickness and conical shells with variable thickness. In the first situation, the conical shells have a 

thickness t=1 mm. In the case of conical shells with variable thickness the following configuration 

was considered: in the first half of the structure the thickness is t1=1 mm, while in the second half of 

the structure the thickness is t2=2 mm. In case of conical shells with constant thickness, the length 

was considered L=48 mm and L=1200 mm. In the case of conical shells with variable thickness the 

length is L=1000 mm. The top radius is r1=50 mm, while the value of the bottom radius r2 ranges 

between 50 and 1000 mm. The analysed conical shells have different boundary conditions which will 

be presented in the following sections.  

The axial load was introduced as P=�·P0, where � is the loading coefficient and P0 is the pre-

buckling axial load used in the first-order analysis. In all the numerical examples presented in the 

following sections the value of the pre-buckling axial load is P0=1 kN.  
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Figure 5.1: The geometry of the axially compressed conical shell. 

 
In case of axially compressed conical shells, the deformed configuration resulting from a first-

order analysis is described by a coupling between the axial extension and axisymmetric extension 

modes. The buckling modes are described by one shell-type deformation mode. It must be remarked 

that since there is no coupled instability (i.e. coupled deformation modes) the computational time and 

effort is low, which is an advantage impossible to achieve using SFEA. In case of axial compression, 

all the GBT matrices are diagonal having a size nxn, where n is the number of deformation modes. 

The finite element matrices [K(e)] and [G(e)] have a size 4nx4n and they are assembled by adding 4x4 

matrices (i.e. there are 4 DOFs for each deformation mode) on the diagonal.  

The axially compressed conical shells were divided in two main case studies according to their 

boundary conditions as following: 

(i) Conical shells without stress concentrations; 

(ii) Conical shells with stress concentrations.  

These case studies are presented in detail in the following sections.  

5.2. Conical Shells without Stress Concentrations 

Conical shells without stress concentrations have boundary conditions of simply supported 

and/or fixed end type. The v and w displacements are always blocked in this type of boundary 

conditions such that the pre-buckling hoop normal stresses ���
0   have very low values on the entire 

structure as it was remarked from the results obtained in first-order analysis. Therefore the effect of 

the hoop stresses ���
0  on the buckling behavior is neglected. The meridional normal stresses �xx

0  don’t 

have significant local variations in this case so they may be approximated on the entire structure by a 

simple mathematical expression [4]: 

 
0

2xx

P

rtc
σ

π
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5.2.1. Conical Shells with Constant Thickness  

The following section presents numerical examples of conical shells without stress 

concentrations having constant thickness. These numerical examples are divided in two categories: 

(i) long conical shells, with the length L=1200 mm and (ii) short conical shells, with the length L=48 

mm.  

5.2.1.1. Long Conical Shells 

a) Simply Supported Conical Shells  

The simply supported conical shells are free to warp (i.e. the u displacement is free), while the 

v and w displacements are blocked at both end sections. The buckling mode of the structure is 

described by a single cross section deformation mode k (see Figure 5.2) and by the number of 

longitudinal half-waves nhw. Figure 5.2 shows the critical buckling modes of the long simply 

supported conical shells for different values of the bottom radius r2 and the corresponding critical 

buckling coefficients �c. The same cases were studied in reference [4] using numerical integration 

instead of FEM and there are no significant differences between the final results as seen in Table 5.1. 

In Figure 5.3 are the normalized graphs of the modal amplitude function �k(x).   

 

 
Figure 5.2: The critical buckling modes of long simply supported conical shells resulting from SFEA.  
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Figure 5.3: Long simply supported conical shells: the graphs of the modal amplitude functions �k(x). 

 
Table 5.1 presents the cri\tical buckling coefficients resulted from SFEA, the ones resulted from 

the GBT-based FE formulation (i.e. GBT-FEM) and, respectively from the Runge-Kutta numerical 

method (i.e. GBT-Runge Kutta) [4]. The table also shows the differences in percentage between the 

results obtained from the GBT-based FE formulation and the ones obtained from SFEA. According 

to the table both GBT-based formulations provide similar results, but, as previously mentioned, the 

GBT-based FE formulation is superior in terms of convergence speed, of versatility of load and 

boundary condition cases and, the most important, of the possibility of coupled instabilities analysis. 

Table 5.1 also shows the order of the cross section deformation mode k and the corresponding number 

of longitudinal half-waves nhw. The values from the table were determined for 5 FE in the GBT-based 

FE formulation resulting 6 nodes and 12 DOFs for all the cases. In SFEA, for the cylindrical shell 

22,506 DOFs were used. The number of DOFs used in SFEA reached 52,974 for the conical shell 

with the bottom radius r2=1000 mm. The large ratio between the number of DOFs used in SFEA and 

the number of DOFs used in the GBT-based FE formulation is also preserved in the rest of the 

numerical examples.  
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Table 5.1: SFEA vs GBT-FEM results for long simply supported conical shells.  

r2[mm] �c SFEA �c GBT-

FEM 

Differences 

 (2) vs. (3) 

�c GBT-

Runge Kutta 

Differences 

(2) vs. (5) 

k nhw 

(1) (2) (3) (4) (5) (6) (7) (8) 

50 490.40 492.54 0.43% 491.35 0.19% 4 2 

60 493.85 502.45 1.71% 501.40 1.53% 4 2 

70 525.27 541.11 2.93% 540.36 2.87% 4 2 

90 563.92 558.34 1.00% 557.95 1.06% 4 1 

100 522.76 520.14 0.50% 519.93 0.54% 4 1 

120 490.72 487.74 0.61% 486.95 0.77% 4 1 

150 498.57 505.56 1.38% 504.23 1.13% 4 1 

200 606.33 629.77 3.72% 625.18 3.11% 4 1 

300 672.62 675.82 0.47% 673.24 0.09% 6 1 

400 610.41 617.72 1.18% 612.61 0.36% 6 1 

500 627.06 640.83 2.15% 633.97 1.10% 6 1 

1000 480.97 471.42 2.03% 466.53 3.00% 8 1 

 

Figure 5.4 ilustrates the finite element convergence of the GBT for long simply supported 

conical shells. The results presented in the figure were determined for a conical shell with the bottom 

radius r2=500 mm. According to the figure the minimum number of FE for which the difference 

between the SFEA results and the GBT-FEM results is less than 5% is 3.  

 

 
Figure 5.4: The finite element convergence of the long simply supported conical shells. 

 

b) Fixed End Conical Shells  
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In the following case study, the conical shells have both end sections fixed which means that 

all the displacements are blocked. Figure 5.5 presents the critical buckling modes resulted from SFEA 

for different values of the bottom radius r2 and Figure 5.6 shows the normalized graphs of the modal 

amplitude functions. Table 5.2 presents the differences between the results determined by SFEA and 

the ones determined by GBT-based FE formulation. Also the table shows the corresponding cross 

section deformation mode k. The values from Table 5.2 were determined using 15 FE in the GBT 

model. Because the number of longitudinal half-waves nhw is not an integer and their amplitude varies 

with respect to the structure’s lenght, the parameter was not included in the table.  

 

 
Figure 5.5: The critical buckling modes of long fixed end conical shells resulting from SFEA. 
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Figure 5.6: Long fixed end conical shells: the graphs of the modal amplitude functions �k(x). 

 
Table 5.2: SFEA vs GBT-FEM results for long fixed end conical shells.  

r2  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k 

50 666.02 677.63 1.71% 4 

60 760.26 729.93 4.16% 4 

70 728.22 752.46 3.22% 6 

90 756.49 771.13 1.90% 6 

100 783.20 799.99 2.10% 6 

120 822.78 810.65 1.50% 6 

150 827.81 834.82 0.84% 8 

200 868.85 853.52 1.77% 8 

300 839.65 863.44 2.74% 10 

400 873.67 856.76 1.97% 10 

500 800.79 826.75 3.14% 12 

1000 586.54 590.90 0.74% 14 

 

c) Conical shells simply supported at both ends and at the middle of the span 

In the following case study conical shells simply supported at both ends and at the middle of 

the span are analysed. Therefore, the proposed formulation’s capacity to analyse different boundary 

conditions is demonstrated. All the structure’s supports are free to warp, while the v and w 

displacements are blocked. The buckling mode of the structure is described by the number of 

circumferential half-waves k and by the number of longitudinal half-waves nhw. Figure 5.7 shows the 
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critical buckling modes resulting from SFEA for different values of the bottom radius r2 and Figure 

5.8 shows the normalized graphs of the modal amplitude functions. Table 5.3 shows the differences 

between the critical bucklng coefficients �c resulted from SFEA and the ones resulted from the GBT-

based FE formulation. As in the previous cases, the differences between the sets of results do not 

exceed 5%.  

 

 
Figure 5.7: The critical buckling modes of long conical shells simply supported at both end and at the middle of 

the span resulting from SFEA. 
 

 
Figure 5.8: Long conical shells simply supported at both ends and at the middle of the span: the graphs of the 

modal amplitude functions �k(x). 
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Table 5.3: SFEA vs GBT-FEM results for long conical shells simply supported at both ends and at the middle of 
the span. 

r2  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k 

50 493.90 491.84 0.42% 4 

60 499.10 504.95 1.16% 4 

70 533.50 545.80 2.25% 4 

90 631.46 658.83 4.15% 4 

100 665.41 673.34 1.18% 6 

120 669.51 693.54 3.47% 6 

150 737.43 769.23 4.13% 8 

200 749.37 766.30 2.21% 8 

300 741.76 776.83 4.51% 10 

400 729.33 747.31 2.41% 12 

500 705.17 708.69 0.50% 14 

1000 498.27 500.08 0.36% 12 

 

d) Conical shells simply supported at one end and fixed at the other 

In the following case study the buckling behavior of conical shells simply supported at the top 

end (radius r1) and fixed at the bottom (radius r2) is presented. Figure 5.9 shows the critical buckling 

modes of the conical shells having different values of the bottom radius r2, the cross section 

deformation mode k and the corresponding critical buckling coefficient �c. Figure 5.10 presents the 

normalized graphs of the modal amplitude functions �k(x) for different values of the bottom radius r2 

obtained by the GBT-based FE procedure. The distribution pattern of the half-waves in the graphs of 

the modal amplitude functions �k(x) of conical shells simply supported at one end and fixed at the 

other one is similar to the graphs determined for fixed end conical shells. The difference between the 

graphs of the modal amplitude functions from the current case (see Figure 5.10) and the graphs of the 

fixed end conical shells (see Figure 5.6) is that they start directly from zero, corresponding to the 

simply supported section (at the left side of Figure 5.10).  
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Figure 5.9: The critical buckling modes of long conical shells simply supported at one end at fixed at the other 

one resulting from SFEA. 
 

 
Figure 5.10: Long conical shells simply supported at an end and fixed at the other one: the graphs of the modal 

amplitude functions �k(x). 
 
Table 5.4 presents the differences between the two modeling techniques. In the GBT-based FE 

procedure the values were determined using 30 FE. As in the previous numerical examples, there 

were no significant differences between the results.   
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Table 5.4: SFEA vs GBT-FEM results for long conical shells simply supported at one end and fixed at the other 
one. 

r2  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k nhw 

50 537.41 542.41 0.92% 4 2 

60 562.51 574.23 2.04% 4 2 

70 590.04 601.59 1.92% 4 2 

90 600.33 606.86 1.08% 4 1 

100 606.58 615.23 1.41% 4 1 

120 645.44 662.05 2.51% 4 1 

150 699.40 713.38 1.96% 6 2 

200 742.04 757.93 2.10% 8 3 

300 740.89 759.75 2.48% 8 2 

400 726.00 759.45 4.41% 10 3 

500 704.36 731.96 3.77% 12 4 

1000 521.34 499.18 4.44% 14 3 

 

5.2.1.2. Short Conical Shells 

a) Simply Supported Conical Shells 

As in the case of long conical shells, the short simply supported conical shells are free to warp 

while the v and w displacements are blocked. Figure 5.11 illustrates the critical buckling loads of short 

simply supported conical shells for different values of the bottom radius r2 resulting from SFEA. 

Figure 5.13 presents the normalized graphs of the modal amplitude functions �k(x) and Figure 5.12 

the critical buckling modes, both resulted from the GBT-based FE formulation performed with 

Matlab. According to Figure 5.13, unlike long conical shells, in case of axially compressed short 

conical shells the shear deformation modes also play a significant role, besides the shell-type 

deformation modes.  
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Figure 5.11: The critical buckling modes of short simply supported conical shells resulting from SFEA. 

 

 
Figure 5.12: Short simply supported conical shells: the critical buckling modes resulting from the GBT-based FE 

formulation in Matlab.  
 



 
 

89 
 

 
Figure 5.13: Short simply supported conical shells: the graphs of the modal amplitude functions �k(x). 

 
Table 5.5 presents the differences between the critical buckling coefficients �c determined by 

SFEA and the GBT-based FE formulation. According to the table the differences between the results 

do not exceed 5%.   
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Table 5.5: SFEA vs GBT-FEM results for short simply supported conical shells. 
r2 

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

50 786.73 773.65 1.69% 12 

60 746.55 731.67 2.03% 12 

70 664.63 652.68 1.83% 12 

90 465.46 460.70 1.03% 10 

100 376.58 376.96 0.10% 10 

120 249.74 247.90 0.74% 10 

150 147.71 148.25 0.37% 8 

200 72.73 72.23 0.69% 8 

300 27.74 27.64 0.38% 6 

 

b) Fixed End Conical Shells  

 The short fixed end conical shells have all the displacements and rotations blocked at both end 

sections as in the case of long fixed end conical shells. Figure 5.14 shows the critical buckling modes, 

the critical buckling coefficients and the corresponding cross section deformation modes k determined 

by SFEA with Abaqus and in Figure 5.16 are the normalized graphs of the modal amplitude functions. 

Also Figure 5.15 illustrates the critical buckling modes resulted from the GBT-based FE formulation 

performed with Matlab. As in the previous case, the shear deformation modes appear along with the 

shell-type deformation modes.   

 

 
Figure 5.14: The critical buckling modes of short fixed end conical shells resulting from SFEA. 

 



 
 

91 
 

 
Figure 5.15: Short fixed end conical shells: the critical buckling modes resulting from the GBT-based FE 

formulation in Matlab. 
 

 
Figure 5.16: Short fixed end conical shells: the graphs of the modal amplitude functions �k(x). 
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Table 5.6 shows the differences between the results determined by SFEA and the ones 

determined by the GBT-based FE procedure. As in the previous cases the differences do not exceed 

5%.  

 
Table 5.6: SFEA vs GBT-FEM results for short fixed end conical shells. 

r2 

[mm] 

�c SFEA �c GBT-

FEM 

Differences k 

50 825.2 839.08 1.65% 12 

60 798.34 810.65 1.52% 12 

70 713.77 723.31 1.32% 12 

90 495.05 500.86 1.16% 12 

100 402.28 406.79 1.11% 12 

120 269.34 270.72 0.51% 10 

150 156.29 156.89 0.39% 10 

200 77.42 77.33 0.13% 8 

300 29.56 29.39 0.60% 8 

 

5.2.2. Conical Shells with Variable Thickness 

In the following sections, conical shells without stress concentrations have variable thickness 

as illustrated in Figure 5.17: in the first half of the structure the thickness is t1=1 mm, while in the 

second half of the structure the thickness is t2=2 mm. The length of the conical shells with variable 

thickness is L=1000 mm. The Abaqus models were analysed using a mesh with 5 mm size and S4 

shell finite elements. The following sections present simply supported and fixed end conical shells 

with variable thickness.  

 

 
Figure 5.17: The geometry of the axially compressed conical shell with variable thickness. 
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5.2.2.1. Simply Supported Conical Shells  

As in the case of simply supported conical shells with constant thickness, the conical shells with 

variable thickness are free to warp, while the v and w displacements are blocked. In Figure 5.18 the 

critical buckling modes of the simply supported conical shells with variable thickness resulting from 

SFEA are illustrated. Figure 5.19 presents the critical buckling modes of the same conical shells from 

the GBT-based FE procedure performed with Matlab. Figure 5.20 shows the normalized graphs of 

the modal amplitude functions �k(x) obtained from the GBT-based FE procedure. 

According to Figure 5.20, unlike in the case of conical shells with constant thickness, in this 

case the shear deformation modes occur along with the shell-type deformation modes. It can also be 

remarked that the graphs of the modal amplitude functions �k(x) of the “v” shear modes have a jump 

at x=500 mm (i.e. the section corresponding to the middle of the span) which emphasizes the change 

from t1=1 mm to t2=2 mm. This jump is very strong for conical shells with a bottom radius of r2=50 

mm and r2=200 mm. Also, in the zone with t1=1 mm, on the left side of the graphs, the modal 

amplitude functions have more half-waves than for t2=2 mm (on the right side of the graphs). This 

obviously is a consequence of the fact that the stiffness of the zone with 2 mm thickness is higher than  

that of the 1 mm thickness zone.  

 

 
Figure 5.18: The critical buckling modes of simply supported conical shells with variable thickness resulting 

from SFEA. 
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Figure 5.19: Simply supported conical shells with variable thickness: the critical buckling modes resulting from 

the GBT-based FE formulation in Matlab. 
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Figure 5.20: Simply supported conical shells with variable thickness: the graphs of the modal amplitude 

functions �k(x). 
 
Table 5.7 presents the differences between the results determined by SFEA and the ones 

determined by the proposed formulation. These differences do not exceed 5% if the shear deformation 
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modes are included in the analysis. If the shear deformation modes are not taken into account, the 

differences between the results may reach up to 8.05% for the conical shell with the radius r2=200 

mm.  

 
Table 5.7: SFEA vs GBT-FEM results for simply supported conical shells with variable thickness. 

r2 

[mm] 

�c SFEA �c GBT-FEM 

with shear 

modes 

�c GBT-FEM 

without 

shear modes 

Differences with 

shear modes  

Differences 

without shear 

modes 

k 

50 642.35 656.35 673.16 2.13% 4.58% 4 

60 669.01 688.59 704.70 2.84% 5.06% 4 

70 702.76 696.08 744.053 0.96% 5.55% 6 

90 719.37 716.90 770.07 0.34% 6.58% 6 

100 729.26 727.56 772.63 0.23% 5.61% 6 

120 708.71 732.50 734.83 3.25% 3.55% 4 

150 714.37 739.94 741.85 3.46% 3.71% 4 

200 749.49 741.99 815.14 1.01% 8.05% 8 

300 715.45 725.37 738.23 1.37% 3.09% 6 

400 675.13 691.36 701.36 2.35% 3.74% 6 

500 658.61 648.56 675.91 1.55% 2.56% 12 

1000 411.77 418.14 419.28 1.52% 1.79% 8 

 

5.2.2.2. Fixed End Conical Shells 

In this case the conical shells have all the end section displacements blocked as in the previous 

cases. Figure 5.21 shows the critical buckling modes obtained from SFEA and also the critical 

buckling coefficients �c and the corresponding cross section deformation modes k. Figure 5.22 also 

shows the critical buckling modes of the fixed end conical shells with variable thickness, but this time 

the buckling modes result from the GBT-based FE procedure performed with Matlab. Figure 5.23 

shows the normalized graphs of the modal amplitude functions. As in the previous case, the graphs 

of the modal amplitude functions for the “v” shear modes have a jump at x=500 mm, in the middle of 

the span more exactly, which shows the jump from t1=1 mm to t2=2 mm. Also the zone with t1=1 mm 

thickness (the left side of the graph) has more half-waves than the zone with t2=2 mm thickness t2=2 

mm (the right side of the graph) which means that, as in the previous case, the stiffness of the zone 

with a 2 mm thickness is higher than that of the 1 mm thickness.   
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Figure 5.21: The critical buckling modes of fixed end conical shells with variable thickness resulting from 

SFEA. 
 

 
Figure 5.22: Fixed end conical shells with variable thickness: the critical buckling modes resulting from the 

GBT-based FE formulation in Matlab. 
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Figure 5.23: Fixed end conical shells with variable thickness: the graphs of the modal amplitude functions �k(x). 
 
Table 5.8 shows the differences between the results determined by SFEA and the results 

determined by the GBT-based FE procedure. The differences do not exceed 5% if the shear 
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deformation modes are included in the buckling analysis. If the shear deformation modes are ignored 

in the buckling analysis, then the smallest difference between results is 1.13% for the conical shell 

with the radius r2=1000 mm and the largest difference between results is 12.32% for the conical shell 

with the radius r2=100 mm.  

 
Table 5.8: SFEA vs GBT-FEM results for fixed end conical shells with variable thickness. 

r2 

[mm] 

�c 

SFEA 

�c GBT-FEM 

with shear 

modes 

�c GBT-FEM 

without shear 

modes 

Differences 

with shear 

modes 

Differences 

without 

shear modes 

k 

50 772.81 748.78 859.44 3.21% 10.08% 8 

60 776.52 754.62 865.67 2.90% 10.30% 8 

70 783.23 756.65 869.36 3.51% 9.91% 10 

90 781.87 761.53 889.26 2.67% 12.08% 10 

100 781.03 763.28 890.73 2.32% 12.32% 10 

120 785.68 765.19 878.37 2.68% 10.55% 10 

150 782.08 764.58 855.35 2.29% 8.57% 12 

200 776.47 761.35 815.14 1.99% 4.74% 12 

300 750.88 736.89 764.38 1.90% 1.77% 14 

400 707.57 701.56 723.45 0.86% 2.19% 14 

500 663.56 658.11 675.91 0.83% 1.83% 14 

1000 422.82 420.60 427.64 0.53% 1.13% 14 

 

5.3. Conical Shells with Stress Concentrations  

The conical shells with stress concentrations considered are cantilevered (only one end fixed, 

where all the displacements are blocked, and the other end is free). The axial load is introduced at the 

free end section of the cantilever conical shell and produces significant end local effects. These local 

effects produce local deformations (see Figure 5.24) and large local variations of the (pre-buckling) 

normal hoop stresses first-order (see Figure 5.25 and Figure 5.26 – the free end is on the left side of 

the graphs). In these figures, the bottom radius of the conical shell is r2=1000 mm. These pre-buckling 

stress concentrations cannot be neglected anymore or approximated by simplified formulae, as Eq. 

(5.1).  

In [4], the normal hoop stress ���
0  on a cross section strip with unitary width measured from the 

free end was determined with the mathematical expression of the normal hoop stress of cylindrical 

shells under exterior pressure (Eq. (24) in reference [4]). The new component of the variation of strain 

energy given by the local effect of the hoop stresses ���
0  was added to the existent boundary conditions. 

Even though satisfactory results were obtained, this approach is a simplification and its success is 
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mostly due to the very high hoop stress ���
0  concentrations in the free end of the structural 

configuration, as can be observed in Figure 5.26. Figure 5.25 and Figure 5.26 show that the GBT 

formulation yields very accurate first-order results when compared with a shell model. The new 

proposed GBT-based FE formulation is capable to take into account the pre-buckling stresses 

accurately, which influence the buckling forces.    

 

 
Figure 5.24: The displacements at the free end of an axially compressed cantilever conical shell resulting from 

SFEA. The scaling factor is 200. 
 

 

Figure 5.25: The pre-buckling normal meridional stresses �xx
0  of an axially compressed cantilever conical shell 

with the radius r2=1000 mm. 
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Figure 5.26: The pre-buckling normal hoop stresses ���
0  of an axially compressed cantilever conical shell with the 

radius r2=1000 mm. 
 

The first-order analysis of conical shells with stress concentrations followed the algorithm 

presented in Section 4.3.1 (see Figure 4.2). In the case of axially compressed conical shells loaded 

with an axial force P0 at the end section x=0, the vector of equivalent nodal forces is the following: 

 

{ }( )
0 0cos 0 0 0 0 sin 0 0

Tef P Pα α= −  
(5.2) 
 

 
where the first 4 components correspond to the axial extension mode and the remaining 4 components 

correspond to the axisymmetric extension mode.  

The normal hoop stresses ���
0  resulting from the first-order analysis are then used in the buckling 

analysis to determine the geometric tensors X1ik
��  (see Eq. (3.38)) which take into account the second-

order effects. The geometric tensors X1ik
��  are then used to determine the elements of the finite element 

geometric stiffness matrix (see  Eq. (4.8)).  

5.3.1. Conical Shells with Constant Thickness 

The following section presents numerical examples of conical shells with stress concentrations 

which have constant thickness. As in the previous section, these numerical examples are entailed in 

two categories: (i) long conical shells, having a length L=1200 mm and (ii) short conical shells, with 

length L=48 mm.  

5.3.1.1. Long Conical Shells 

a) Cantilever Conical Shells  
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Figure 5.27 and Figure 5.28 show the critical buckling modes resulting from SFEA and the 

GBT-based FE procedure performed with Matlab, while Figure 5.29 shows the normalized graphs of 

the modal amplitude functions.  

 

 
Figure 5.27: The critical buckling modes of long cantilever conical shells resulting from SFEA. 
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Figure 5.28: Cantilever conical shells: the critical buckling modes resulting from the GBT-based FE formulation 
in Matlab. 

 

 
Figure 5.29: Long cantilever conical shells: the graphs of the modal amplitude functions �k(x). 

 
To demonstrate the importance of first-order local end effects a simplified analysis was run in 

which the normal hoop stresses ���
0  were neglected and the normal meridional stresses �xx

0  were 

approximated by Eq. (5.1). Table 5.9 shows the differences between the rigorous procedure and the 

simplified procedure. The results were compared to the critical buckling coefficient determined by 

SFEA. By the simplified procedure resulted errors up to 90% for large values of the bottom radius  r2, 

proving the fact that local end effects must be taken into account in the buckling analysis of the 

cantilever conical shells with the free end loaded.  
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Table 5.9: SFEA vs GBT-FEM results when local effects are taken/not taken into account. 

r2  

[mm] 

�c 

SFEA 

�c GBT-

FEM 

with 

local 

effects 

�c GBT-

FEM 

without 

local 

effects  

Differences 

SFEA vs. 

GBT with 

local effects 

Differences 

SFEA vs. 

GBT 

without 

local effects 

k 

50 139.98 141.73 141.73 1.24% 1.24% 2 

60 204.9 207.98 207.98 1.48% 1.48% 2 

70 233.62 234.61 262.55 0.42% 11.02% 4 

90 230.53 229.20 288.55 0.58% 20.11% 4 

100 226.82 227.64 307.15 0.36% 26.15% 4 

120 218.06 215.80 351.75 1.05% 38.01% 6 

150 182.8 182.89 377.65 0.05% 51.60% 6 

200 147.44 145.02 392.85 1.67% 62.47% 6 

300 100.6 101.13 423.02 0.53% 76.22% 6 

400 74.551 76.09 406.42 2.03% 81.66% 6 

500 59.068 59.97 386.48 1.50% 84.72% 6 

1000 26.66 27.91 272.91 4.48% 90.23% 8 

 

b) Cantilever Conical Shells with Simple Support at the Middle of the Length 

In the following case study a cantilever conical shell with a simple support at the middle of the 

length is analysed. As it was previously mentioned, the cantilever conical shells have the end 

corresponding to the top radius free and the end corresponding to the bottom radius fixed. At the 

middle of the length, the cantilever has a simple support which allows warping, while the v and w 

displacements are blocked. Figure 5.30  and Figure 5.31 show the buckling modes resulting from 

SFEA and the GBT-based FE formulation, respectively, and Figure 5.32 shows the normalized graphs 

of the modal amplitude functions �k(x). Table 5.10 shows the differences between the SFEA and GBT 

and also the corresponding cross section deformation mode k. As in the previous case the local end 

effects are present and they must not be neglected. By comparing the critical buckling coefficients 

from Table 5.9 and Table 5.10 one can observe that the intermediary simple support enhances the 

stiffness of the conical shell, but only for small values of the bottom radius r2. This is due to localized 

buckling occurring at the free end, for large values of the conical shell’s bottom radius with respect 

the longitudinal axis, a phenomenon which can be easily observed from Figure 5.32. 
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Figure 5.30: The critical buckling modes of cantilever conical shells with simple support at the middle of the 

length resulting from SFEA 
 

 
Figure 5.31: Cantilever conical shells with a simple support at the middle of the length: the critical buckling 

modes resulting from the GBT-based FE formulation in Matlab. 
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Figure 5.32: Cantilever conical shells with simple support at the middle of the length: the graphs of the modal 

amplitude functions �k(x). 
 

Table 5.10: SFEA vs GBT-FEM results for cantilever conical shells with simple support at the middle of the 
length. 

r2 

[mm] 

�c SFEA �c GBT-

FEM 

Differences k 

50 274.24 277.19 1.06% 4 

60 272.15 277.53 1.94% 4 

70 267.67 274.05 2.33% 4 

90 257.23 256.12 0.43% 4 

100 244.72 243.87 0.35% 4 

120 219.45 215.76 1.71% 6 

150 183.06 184.08 0.55% 6 

200 143.18 148.10 3.32% 6 

300 101.03 100.98 0.04% 8 

400 74.81 76.32 1.97% 6 

500 60.14 60.92 1.27% 6 

1000 27.37 27.83 1.62% 8 

 

5.3.1.2. Short Conical Shells 

The following section presents the buckling analysis of short cantilever conical shells. As in the 

case of long cantilever conical shells, the local end effects, which occur at the loaded free end, must 

be taken into account. Figure 5.33 and Figure 5.34 show the critical buckling modes resulting from 

SFEAand the GBT-based FE procedure performed with Matlab, respectively, and in Figure 5.35 the 
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normalized graphs of the modal amplitude functions are displayed. Unlike in the previous case (i.e. 

long cantilever conical shells), along with the shell-type deformation modes the shear deformation 

modes also participate in the results. Also in Figure 5.35 one can observe the areas with stress 

concentrations. 

 

 
Figure 5.33: The critical buckling modes of short cantilever conical shells resulting from SFEA. 

 

 
Figure 5.34: Short cantilever conical shells: the critical buckling modes resulting from the GBT-based FE 

formulation in Matlab. 
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Figure 5.35: Short cantilever conical shells: the graphs of the modal amplitude functions �k(x). 

 
Table 5.11 shows the differences between the results determined by SFEA and the GBT-based 

FE formulation. As in the previous case, the stress concentrations must be taken into account in the 

buckling analysis in order to keep the differences between the results below 5%. Besides the stress 

concentrations at the free end, the shear deformation modes must also be included in the analyses.   
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Table 5.11: SFEA vs GBT-FEM results for short cantilever conical shells. 
r2 

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

50 321.56 322.50 0.29% 10 

60 103.36 104.22 0.82% 12 

70 58.60 58.98 0.65% 12 

90 29.71 30.02 1.01% 12 

100 23.38 23.73 1.47% 12 

120 15.59 15.52 0.43% 10 

150 9.92 10.14 2.15% 10 

200 5.70 5.74 0.70% 8 

300 3.03 2.88 5.00% 6 

 

5.3.2. Conical Shells with Variable Thickness 

In the following section conical shells with stress concentrations and variable thickness are 

considered, as illustrated in Figure 5.36: the first half of the structure has a thickness t1=1 mm, while 

the second half of the structure has a thickness t2=2 mm. The length of the conical shells with variable 

thickness is L=1000 mm. The models created in Abaqus were analysed using a mesh size of 5 mm 

and S4 shell finite elements. As in the case of conical shells with constant thickness, the pre-buckling 

stresses are determined by first-order analysis. Figure 5.36 and Figure 5.37 show the critical buckling 

modes of the cantilever conical shells with variable thickness resulting from SFEA and the GBT-

based FE procedure performed with Matlab, respectively, and in Figure 5.38 the normalized graphs 

of the modal amplitude functions are provided.   
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Figure 5.36: The critical buckling modes of cantilever conical shells with variable thickness resulting from 

SFEA.  
 

 
Figure 5.37: Cantilever conical shells: the critical buckling modes resulting from the GBT-based FE formulation 

in Matlab. 
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Figure 5.38: Cantilever conical shells with variable thickness: the graphs of the modal amplitude functions �k(x). 
 
According to Figure 5.38, the “u” and “v” shear modes are also present along with the shell-

type deformation modes. The graphs of the modal amplitude functions �k(x) corresponding to shear 



 
 

112 
 

deformation modes show as well the effects of the stress concentrations at the free end, where the 

axial compression is applied.   

Table 5.12 shows the differences between the results determined by SFEA and the ones 

determined using GBT for different values of the bottom radius r2. The results were obtained with 30 

FE in the GBT-based model. To demonstrate the importance of taking into account the shear 

deformation modes a separate analysis was run in which the GBT-based FE formulation was applied 

using only the shell-type deformation modes. According to Table 5.12 the differences between the 

results determined by SFEA and the ones determined by the GBT-based FE formulation with shear 

deformation modes do not exceed 5%. When the shear deformation modes are neglected, the 

differences between the results are larger, demonstrating the influence of this type of deformation 

modes.  

 
Table 5.12: SFEA vs GBT-FEM results for cantilever conical shells with variable thickness when shear 

deformation modes are taken/not taken into account. 

r2 

[mm] 

�c 

SFEA 

�c GBT-

FEM with 

shear 

modes 

�c GBT-FEM 

without 

shear modes 

Differences 

with shear 

modes 

Differences 

without shear 

modes 

k 

50 257.28 259.91 293.08 1.01% 12.22% 4 

60 249.79 253.10 283.84 1.31% 12.00% 4 

70 241.96 246.30 275.07 1.76% 12.04% 4 

90 216.57 218.80 257.59 1.02% 15.93% 6 

100 202.33 204.71 239.36 1.16% 15.47% 6 

120 178.03 178.21 209.49 0.10% 15.02% 8 

150 147.68 148.15 176.18 0.32% 16.18% 8 

200 114.03 115.06 134.78 0.90% 15.40% 8 

300 77.56 79.22 91.10 2.09% 14.86% 8 

400 58.32 60.12 68.66 2.99% 15.06% 8 

500 46.28 47.94 54.52 3.45% 15.10% 8 

1000 20.90 21.72 24.61 3.79% 15.08% 8 

 

5.3.3. The Accuracy of the GBT-based FE Formulation 

In the previous example, the high variation of the pre-buckling normal stresses occur on a 

limited zone near the free end where the finite element mesh should be sufficiently refined to capture 

them. To verifiy the precision and stability of the GBT-based FE formulation two case studies were 

considered for the analysed numerical examples: (i) finite elements with constant length and (ii) finite 
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elements with variable length. In Abaqus the size of the shell finite elements ranges linearly from 

aproximately 5 mm at the free end to 50 mm at the fixed end.  

5.3.3.1. Finite Elements with Constant Length 

In this case study the cantilever conical shells were modeled with shell finite elements having 

constant length. Figure 5.40 shows the differences between the results determined by SFEA and the 

ones determined by the GBT-based FE formulation for a cantilever conical shell having the bottom 

radius r2=500 mm. In the GBT-based FE formulation the number of finite elements ranges from 1 to 

15. According to Figure 5.40 the minimum number of finite elements where the difference between 

the results is under 5% is 6. 

5.3.3.2. Finite Elements with Variable Length  

In this case, the previous numerical example (i.e. the conical shell with the bottom radius r2=500 

mm) was analysed using a mesh made of finite elements with variable length. Figure 5.39 describes 

the discretization of cantilever conical shells using finite elements with variable length. At the free 

end of the conical shell, in the area with local effects, the finite elements have constant length on a 

distance equal to r1/cos	, where r1 is the top radius and 	 is the angle of the conical shell’s semi-

vertex. Therefore the area with local effects has a refined mesh. On the rest of the conical shell’s 

length, in the area without local effects, the length of the finite elements increases linearly, therefore 

resulting in a coarser mesh in this zone.  

 

 
Figure 5.39: The discretization of the cantilever conical shell with finite elements having variable length. 
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Figure 5.40: The differences between SFEA vs GBT results for different numbers of finite elements of the GBT 

model. 
 
Table 5.13 presents the results determined for the different types of meshing and also the results 

determined by SFEA. These results are compared in Figure 5.40 to the values determined using shell? 

FE with constant length. According to Figure 5.40 the differences between the SFEA results and the 

GBT results are now under 3% for only 5 FE, meaning that 2 FE in the area with local effects and 3 

FE in the area without local effects suffice.   
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Table 5.13: The differences between SFEA vs GBT results for different sizes of the FE mesh. 

No. of FE 

in the area 

with local 

effects 

No. of FE 

in the 

area 

without 

local 

effects 

�c 

SFEA 
 

�c 

GBT 

Differences 

1 1 

59.06 

66.53 11.23% 

1 2 63.76 7.37% 

2 2 63.68 7.26% 

2 3 60.65 2.62% 

3 3 60.70 2.70% 

3 4 60.14 1.80% 

4 4 60.15 1.81% 

4 5 60.05 1.65% 

5 5 60.05 1.65% 

5 6 60.02 1.60% 

6 6 60.02 1.61% 

6 7 60.01 1.58% 

7 7 60.01 1.59% 

7 8 60.01 1.57% 

 

5.4. Conclusions 

This chapter presented the case of axially compressed conical shells. The numerical examples 

studied in this loading case were divided into two main categories: (i) axially compressed conical 

shells without stress concentrations and (ii) axially compressed conical shells with stress 

concentrations. The conical shells without stress concentrations are supported at both end sections. 

These are simply supported structures, fixed end structures or combinations between these types of 

boundary conditions. In this case, the stress concentrations which occur at the supports are so small 

that they can be neglected (note: I think the stress concentrations are not small, but the supports make 

them less relevant for buckling). The axially compressed conical shells with stress concentrations are 

cantilever conical shells where the load is applied at the free end. For both categories mentioned 

previously the following case studies were considered: long andshort conical shells with constant 

thickness, and conical shells with variable thickness. 

According to the numerical examples presented in this chapter a few remarks can be 

highlighted. The first remark is the fact that in all the case studies the differences between the results 
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determined by SFEA and the ones determined by the GBT-based FE procedure do not exceed 5%. 

Unlike in SFEA, in order to achieve results with similar precision using GBT, a small number of finite 

elements suffices. For example, according to Figure 5.4 the minimum number of necessary finite 

elements for which the differences between the two analysis and modeling procedures is under 5% is 

only 3. The fact that for all the boundary conditions and geometric configurations analysed in this 

chapter the differences between the two analysis methods did not exceed 5% shows that the GBT-

based FE formulation is both accurate and versatile. 

The second remark is related to short conical shells and conical shells with variable thickness. 

In this case, in order to have good results with differences less than 5% with respect to a SFEA, the 

“u” and “v” shear modes must be inserted in the analysis, besides the shell-type deformation modes. 

It was proved according to Table 5.12 that the differences between the results determined by SFEA 

and the ones determined by the proposed formulation exceed 5% if the shear deformation modes are 

neglected from the buckling analysis.  

The last remark is about conical shells with stress concentrations. In this case the analysis had 

two steps. In the first step  a first-order analysis is performed, from which the pre-buckling normal 

meridional and hoop stresses are obtained. In the second step, a buckling analysis is performed using 

the pre-buckling normal stresses determined by the first-order analysis. To demonstrate the 

importance of including stress concentrations in the buckling analysis of cantilever conical shells, a 

separate analysis was run in which the normal hoop stresses were neglected, while the normal 

meridional stresses were approximated by Eq. (5.1). According to Table 5.9, the differences between 

the SFEA results and the GBT-based FE results exceed 5% when the stress concentrations are 

neglected, reaching up to 90% in case of large values of the bottom radius r2.  

Also in the case of conical shells with stress concentrations, the influence of the meshing 

procedure on the final results was analysed. Two situations were considered: in the first situation the 

shells were meshed with finite elements having constant length, while in the second situation the 

shells were meshed with finite elements having variable length. In the second case, the models were 

meshed as following: at the free end, on a distance equal to r1/cos	, finite elements with constant 

length were used resulting in a refined mesh, while on the rest of the structure the length of the finite 

elements increases linearly resulting in a coarser mesh (see Figure 5.39). At the free end the refined 

mesh is able to capture more accurately the stress concentrations that occur due to the axial 

compression applied in that area. Figure 5.40 shows that the mesh with finite elements having variable 

length is more efficient than the mesh with finite elements having constant length. Therefore, the 

minimum number of finite elements necessary to have differences under 5% between the two 

modeling procedures is 5 in the case of finite elements with variable length (i.e. 2 FE in the area with 
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stress concentrations and 3 FE for the rest of the structure). In the of case finite elements with constant 

length, the minimum number necessary to have differences between results under 5% is 7.  
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Chapter VI 
Conical Shells under Torsion 

6.1. Introduction 

Chapter V presented axially compressed conical shells. That study was divided into two main 

categories: conical shells without stress concentrations and conical shells with stress concentrations. 

In all the boundary conditions and geometrical configuration cases presented in Chapter V, the 

differences between the results determined by SFEA and the ones determined by the GBT-based FE 

procedure did not exceed 5%. This showed that the developed GBT-based FE formulation is both 

versatile and accurate. The case of axially compressed conical shells is, generally, a rather simple case 

because the solution of the GBT system of differential equations can be sought using only one shell-

type deformation mode (where only these deformation modes need to be taken into account). This is 

due to the fact that the GBT system of differential equations is not coupled for axially compressed 

conical shells. Therefore, the unknowns can be determined by solving each equation of the system 

separately.  

In this chapter the buckling analysis of conical shells under torsion is presented. Unlike for 

axially compressed conical shells, where the geometric matrix X1ik
�x  (see Eq. (3.37), where j=1 is the 

axial compresson) is diagonal if only the shell-type deformation modes are taken into account, in the 

case of conical shells under torsion the GBT system of differential equations is coupled. This means 

that the system’s equations cannot be solved separately. The geometric matrix  X4ik
�  (see Eq. (3.39), 

where j=4 corresponds to torsion) is not diagonal. The critical buckling mode resulting from the 

analysis is always a combination between two similar shell-type deformation modes with the same 

order m. This buckling behavior was initially observed in cylindrical shells [120]. In case of conical 

shells under torsion, besides the shell-type deformation modes, shear deformation modes need to be 

introduced, because their absence leads to non-negligible errors.  

For the numerical examples presented in the following sections the conical shell from Figure 

6.1 was considered. The analysed conical shells are made of steel (E=210 GPa, 
=0.3), the top radius 

is r1=50 mm, while the bottom radius r2 ranges between 50 and 1000 mm. As in the case of axially 

compressed conical shells presented in Chapter V, two situations were considered: (i) conical shells 

with constant thickness and (ii) conical shells with variable thickness. The length of the analysed 

structures also ranges between 200 and 5000 mm. Therefore the case studies were divided into three 

categories: (i) short conical shells, (ii) medium conical shells and (iii) long conical shells.  
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Figure 6.1: The geometry of the conical shell under torsion.  

 
The analysed conical shells are fixed at both ends. The initial torsional moment Mt, introduced 

at the ends of the structure, produces a shear stress �0=1000 N/mm2 at the top end (with radius r1). 

The initial state of stress was determined by a first order analysis using the torsion mode described 

by Eq. (3.24). However, the state of stress of conical shells under torsion is described only by shear 

stresses which can also be determined with Bredt’s classical expression: 

 
0

22
t

x

M

t r
θτ

π
=  
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The proposed procedure implemented in Matlab [6] was adapted to conical shells under torsion 

where the deformation modes are coupled. The final results were compared to the results determined 

by SFEA which was run in Abaqus [7] with S4 rectangular shell finite elements. The size of the mesh 

ranges between 5 and 20 mm depending on the size of the bottom radius r2 and on the length of the 

analysed structure. For example, for the conical shells with r2=50 mm a mesh with 5 mm was used, 

while for r2=1000 mm  the element size was 20 mm.  

In the following sections several numerical examples of conical shells under torsion are 

presented. These numerical examples were divided into two main categories: (i) conical shells with 

constant thickness and (ii) conical shells with variable thickness. The two main categories were also 

each divided into three cases depending on the length of the structure as follows: (i) short conical 

shells (L<1000 mm), (ii) medium conical shells (L ranges 1000 between 2000 mm) and (iii) long 

conical shells (L�2000 mm). 
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6.2. Conical Shells with Constant Thickness 

The following section presents conical shells under torsion with constant thickness. In the 

numerical examples presented in the next sections the thickness of the wall is t=1 mm.  

6.2.1. Short Conical Shells  

The following case study concerns short conical shells under torsion. The short conical shells 

are structures having a length L<1000 mm. For the numerical examples in this category the following 

lengths were considered: L=200 mm, L=400 mm and L=800 mm.  

Figure 6.2 shows the critical buckling modes of short conical shells with L=800 mm resulting 

from SFEA. Figure 6.3 presents the corresponding buckling modes resulting from the GBT-based FE 

formulation performed with Matlab. Besides the critical buckling modes, the figures also show the 

corresponding critical buckling coefficients �c and cross section deformation modes k.  

In Figure 6.4 are illustrated the normalized graphs of the modal amplitude functions �k(x) for 

short conical shells with L=800 mm resulting from the GBT-based FE procedure. According to Figure 

6.4, besides the shell-type deformation modes, the “u” and “v” shear modes also appear. It can also 

be remarked that, for the conical shell with r2=500 mm, the longitudinal half-waves are concentrated 

near the top (at the left side of the graph), which means that the bottom area is stiffer. For r2=50 mm 

andr2=100 mm, the graphs of the modal amplitude functions for the “v” shear modes reveal 

concentrations near the end sections (i.e. in the fixed ends). This might show possible stress 

concentrations.  

Table 6.1 shows the differences between the results determined by SFEA and the ones 

determined by the GBT-based FE formulation. The differences do not exceed 5%. According to Table 

6.1, as the length of the conical shell increases, the value of the critical buckling coefficient and the 

order of the cross section deformation mode k decrease. Also, the length of the longitudinal half-

waves decreases as the number of circumferential half-waves k increases. This means that, as the 

length increases, the conical shell becomes more flexible and more sensitive to buckling. 

 



 
 

121 
 

 
Figure 6.2: The critical buckling modes of short conical shells under torsion having the length L=800 mm 

resulting from SFEA. 
 

 
Figure 6.3: The critical buckling modes of short conical shells under torsion having the length L=800 mm 

resulting from the GBT-based FE formulation performed with Matlab code.  
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Figure 6.4: Short conical shells under torsion: the graphs of the modal amplitude functions �k(x). 
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Table 6.1: SFEA vs GBT-FEM results for short conical shells under torsion. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

200 0.64994 0.6279 3.51% 10+11 

400 0.45344 0.4443 2.06% 8+9 

800 0.31477 0.313 0.57% 6+7 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

200 0.93626 0.9354 0.09% 12+13 

400 0.67276 0.6732 0.07% 10+11 

800 0.4862 0.4877 0.31% 8+9 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

800 1.0484 1.0165 3.14% 12+13 

 

6.2.2. Medium Conical Shells 

The following section studies numerical examples of medium conical shells under torsion. The 

medium conical shells are structures having a length ranging between 1000 mm and 2000 mm. In this 

case the analysed numerical examples have L=1000 mm and L=1500 mm.  

Figure 6.5 illustrates the critical buckling modes of conical shells with L=1500 mm resulting 

from SFEA. The critical buckling modes of the same conical shells resulting from the GBT-based FE 

procedure performed with Matlab are presented in Figure 6.6.  

Figure 6.7 shows the normalized graphs of the modal amplitude functions for L=1500 mm 

resulting from the proposed formulation. As in the previous case, for conical shells with r2=500 mm 

and r2=1000 mm, the half-waves concentrate at the top end. This means that the cross sections near 

the bottom are stiffer. 

 Table 6.2 shows the differences between the results determined by SFEA and the ones 

determined by the proposed formulation which, like in the previous case, do not exceed 5%. 

According to Table 6.2, in the case of conical shells with r2=50 mm and r2=500 mm, the order of the 

cross section deformation mode k decreases, while in the case of conical shells with r2=100 mm and 

r2=1000 mm, the order of the cross section deformation mode k remains unchanged. As in the previous 

case, the value of the critical buckling coefficient decreases as the length of the conical shell increases. 
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Figure 6.5: The critical buckling modes of medium conical shells under torsion having the length  L=1500 mm 

resulting from SFEA. 
 
 

 
Figure 6.6: The critical buckling modes of medium conical shells under torsion having the length  L=1500 mm 

resulting from the GBT-based FE formulation performed with Matlab code. 
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Figure 6.7: Medium conical shells under torsion: the graphs of the modal amplitude functions �k(x). 
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Table 6.2: SFEA vs GBT-FEM results for medium conical shells under torsion. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 0.29272 0.2908 0.66% 6+7 

1500 0.22366 0.2257 0.90% 4+5 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 0.43306 0.4411 1.82% 6+7 

1500 0.34991 0.3534 0.99% 6+7 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 1.0075 0.9604 4.90% 12+13 

1500 0.8318 0.8404 1.02% 10+11 

r2=1000 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 1.0121 1.0484 3.46% 12+13 

1500 0.98308 1.0158 3.22% 12+13 

 

6.2.3. Long Conical Shells  

The following numerical examples illustrate long conical shells under torsion. The long conical 

shells are structures having the length L�2000 mm.  

Figure 6.8 illustrates the critical buckling modes of long conical shells under torsion with length 

L=5000 mm resulting from SFEA. Figure 6.9 presents the critical buckling modes resulting from the 

GBT-based FE procedure performed with Matlab for the same conical shells.  

Figure 6.10 presents the normalized graphs of the modal amplitude functions �k(x)  for conical 

shells with L=5000 mm resulting from the proposed formulation. As in the cases mentioned 

previously, for conical shells with large values of the bottom radius r2, the half-waves concentrate at 

the top end, because in the bottom the cross sections are stiffer.  

Table 6.3 shows the differences between the results determined by the two analysis methods 

which, as in the previous sections, do not exceed 5%. According to Table 6.3, in the case of conical 

shells with r2=50 mm, the order of the cross section deformation mode k remains unchanged as the 

length increases, while in the rest of the cases, the order of the cross section deformation mode k 

decreases. 
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Figure 6.8: The critical buckling modes of long conical shells under torsion having the length L=5000 mm 

resulting from SFEA. 
 



 
 

128 
 

 
Figure 6.9: The critical buckling modes of long conical shells under torsion having the length L=5000 mm 

resulting from the GBT-based FE formulation performed with Matlab code. 
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Figure 6.10: Long conical shells under torsion: the graphs of the modal amplitude functions �k(x). 
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Table 6.3: SFEA vs GBT-FEM results for long conical shells under torsion. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.18971 0.1907 0.52% 4+5 

5000 0.15796 0.1595 0.97% 4+5 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.32251 0.326 1.07% 6+7 

5000 0.19479 0.1982 1.72% 4+5 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.75153 0.7523 0.10% 10+11 

5000 0.46779 0.4899 4.51% 6+7 

r2=1000 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 1.0558 1.0154 3.98% 12+13 

5000 0.6733 0.6909 2.55% 8+9 

 

6.3. Conical Shells with Variable Thickness 

In this section the analysed conical shells have variable thickness as illustrated in Figure 6.11: 

in the first half of the structure the thickness is t1=1 mm, while in the second half of the structure the 

thickness is t2=2 mm. The following sections present conical shells under torsion with variable 

thickness and having different lengths.  

 

 
Figure 6.11: The geometry of the conical shell under torsion with variable thickness. 

 



 
 

131 
 

6.3.1. Short Conical Shells 

The following section presents short conical shells under torsion with length  L<1000 mm. As 

in the previous case, for each conical shell with a particular bottom radius r2 value, the following 

lengths were considered: L=200 mm, L=400 mm and L=800 mm. Figure 6.12 displays the critical 

buckling modes, the values of the critical buckling coefficients �c and the corresponding cross-section 

deformation modes k resulting from SFEA, for conical shells with L=800 mm. Figure 6.13 presents 

the critical buckling modes of the same conical shells resulting from the GBT-based FE procedure 

performed with Matlab. According to the figures, if the thickness is variable then the value of the 

critical buckling coefficient is higher than in the previous case, which means that the structure 

becomes stiffer in general. From the figures one can observe that the largest torsion deformations 

occur in the area with t1=1 mm, while in for t2=2 mm the deformations are smaller because the cross 

section is stiffer. Also, in the figures it can be observed that the order of the cross section deformation 

mode k decreases as the length of the conical shell increases.  

 

 
Figure 6.12: The critical buckling modes of short conical shells under torsion with variable thickness having the 

length L=800 mm resulting from SFEA. 
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Figure 6.13: The critical buckling modes of short conical shells under torsion with variable thickness having the 

length L=800 mm resulting from the GBT-based FE procedure performed with Matlab code. 
 
Figure 6.14 shows the normalized graphs of the modal amplitude functions �k(x) for conical 

shells with L=800 mm resulting from the GBT-based FE procedure. As in the previous case, the “u” 

and “v” shear deformation modes occur, besides the shell-type deformation modes, both being 

coupled. According to Figure 6.14, the graphs of the modal amplitude functions for the “v” shear 

modes have a jump at the middle of the span, corresponding to the transition from t1=1 mm to t2=2 

mm. This shows that in the thickness transition zone there are large transverse shear deformations. 

The “v” shear modes that have jumps at the middle of the span are, depending on the bottom radius, 

the following: for r2=50 mm and r2=100 mm is k=8v+9v and for r2=500 mm is k=12v+13v.   

Also, according to Figure 6.14, the longitudinal half-waves concentrate more in the area with 

t1=1 mm (at the left side of the graph), which means that the area with t2=2 mm is stiffer and less 

sensitive to buckling. This aspect is clearly shown by the conical shell with r2=50 mm: in Figure 6.4, 

for r2=50 mm and constant thickness, the longitudinal half-waves are distributed almost evenly, while 

for the conical shell with r2=50 mm and variable thickness, the longitudinal half-waves are distributed 

according to the cross section stiffness (the area with smaller thickness has a complex distribution, 

while the area with larger thickness has simple distribution.  
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Figure 6.14: Short conical shells under torsion with variable thickness: the graphs of the modal amplitude 

functions �k(x). 
 
Table 6.4 provides the differences between the results determined by SFEA and the GBT-based 

FE procedure. According to the table, the differences do not exceed 5%, which means that the 

proposed formulation can also be applied in the case of conical shells under torsion with variable 

(stepped) thickness.  
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Table 6.4: SFEA vs GBT-FEM results for short conical shells under torsion with variable thickness. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

200 0.84924 0.8693 2.31% 12+13 

400 0.62697 0.6041 3.79% 10+11 

800 0.44185 0.432 2.28% 8+9 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

200 1.1097 1.099 0.97% 14+15 

400 0.78469 0.808 2.88% 10+11 

800 0.54899 0.5602 2.00% 8+9 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

800 1.0899 1.0492 3.88% 12+13 

 

6.3.2. Medium Conical Shells  

The following case study presents medium conical shells with variable thickness. The length of 

these structures, in this situation, ranges between 1000 mm and 2000 mm. Like in the previous case, 

for each bottom radius r2 the following lengths were considered: L=1000 mm and L=1500 mm. 

Figure 6.15 shows the critical buckling modes, the critical buckling coefficients �c and the cross 

section deformation modes k  for conical shells with L=1500 mm resulting from SFEA. Figure 6.16 

illustrates the critical buckling coefficients for the same conical shells but determined by the GBT-

based FE procedure. As in the case of short conical shells with variable thickness, the largest torsion 

deformations occur in the area with t1=1 mm, because the cross sections are less stiffer than in the 

area with t2=2 mm.  

Figure 6.17 presents the normalized graphs of the modal amplitude functions �k(x) for the 

conical shells with L=1500 mm resulting from the GBT-based FE formulation. As in the case 

presented in the previous section, the graphs of the modal amplitude functions for the “v” shear modes 

describe a jump at the middle of the span, in the thickness transition zone. The “v” shear modes which 

produce jumps at the middle of the span are the following: for r2=50 mm and r2=100 mm is k=6v+7v, 

for r2=500 mm is k=10v+11v and for r2=1000 mm is k=12v+13v. Also, the largest concentration of 

longitudinal half-waves is in the area with t1=1 mm (the left side of the graph), where the cross 

sections are less stiffer. 
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Figure 6.15: The critical buckling modes of medium conical shells under torsion with variable thickness having 

the length L=1500 mm resulting from SFEA. 
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Figure 6.16: The critical buckling modes of medium conical shells under torsion with variable thickness having 

the length L=1500 mm resulting from the GBT-based FE procedure with Matlab code. 
 

Table 6.5 provides the differences between the results determined by SFEA and the ones 

determined by the GBT-based FE formulation. According to the table the differences between these 

results do not exceed 5%. According to Table 6.5, in case of conical shells with r2=50 mm and 

r2=1000 mm, the order of the cross section deformation mode k remains unchanged as the length 

increases: for r2=50 mm, the shell-type deformation modes are k=6+7, while for r2=1000 mm the 

shell-type deformation modes are k=12+13. In the two remaining cases the order of the cross section 

deformation mode k decreases as the length increases. 
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Figure 6.17: Medium conical shells under torsion with variable thickness: the graphs of the modal amplitude 

functions �k(x). 
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Table 6.5: SFEA vs GBT-FEM results for medium conical shells under torsion with variable thickness. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 0.38421 0.3933 2.31% 6+7 

1500 0.31352 0.3124 0.36% 6+7 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 0.49349 0.4951 0.33% 8+9 

1500 0.3993 0.4139 3.53% 6+7 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 0.94456 0.9799 3.61% 12+13 

1500 0.85609 0.8642 0.94% 10+11 

r2=1000 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

1000 1.1343 1.159 2.13% 12+13 

1500 1.1593 1.1251 3.04% 12+13 

 

6.3.3. Long Conical Shells  

This section studies long conical shells with variable thickness. The long conical shells have a 

length L�2000 mm. In the numerical examples presented below, for each conical shell with a bottom 

radius r2, the following lengths were considered: L=2000 mm and L=5000 mm. 

Figure 6.18 presents the critical buckling modes, the values of the critical buckling coefficients 

and the corresponding cross-section deformation modes of conical shells with L=5000 mm and 

resulting from SFEA. The critical buckling modes of the same conical shells resulting from the 

proposed formulation are illustrated in Figure 6.19. The largest torsion deformations occur in the area 

with t1=1 mm, as in the cases presented in the previous sections.  
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Figure 6.18: The critical buckling modes of long conical shells under torsion with variable thickness having the 

length L=5000 mm resulting from SFEA. 
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Figure 6.19: The critical buckling modes of long conical shells under torsion with variable thickness having the 

length L=5000 mm resulting from the GBT-based FE procedure performed in Matlab. 
 
Figure 6.20 illustrates the normalized graphs of the modal amplitude functions �k(x) of conical 

shells with L=5000 mm and resulting from the GBT-based FE procedure. As in the previous sections, 

the graphs of the modal amplitude functions for the “v” shear modes show a jump at the middle of 

the span, where the thickness transition takes place. In the numerical examples presented in Figure 

6.20, the “v” shear modes which produce jumps at the middle of the span are the following: for r2=50 

mm and r2=100 mm is k=4v+5v, for r2=500 mm is k=6v+7v and for r2=1000 mm  is k=8v+9v. Also, 

the higher longitudinal half-wave concentrations are in the zone with t1=1 mm, at the left side of the 

graph.  

Table 6.6 presents the differences between the results determined by the two buckling analysis 

procedures. The differences do not exceed 5%. According to Table 6.6, for r2=50 mm, the order of 

the cross section deformation mode k remains unchanged and, in this case, is k=4+5. In the remaining 

cases, the order of the cross section deformation mode k decreases as the length of the conical shell 

increases. 
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Figure 6.20: Long conical shells under torsion with variable thickness: the graphs of the modal amplitude 

functions �k(x). 
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Table 6.6: SFEA vs GBT-FEM results for long conical shells under torsion with variable thickness. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.31169 0.3124 0.23% 4+5 

5000 0.17267 0.1744 0.99% 4+5 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.3529 0.3503 0.74% 6+7 

5000 0.2099 0.2155 2.60% 4+5 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 0.73033 0.7601 3.92% 10+11 

5000 0.48142 0.5017 4.04% 6+7 

r2=1000 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences k  

2000 1.0683 1.0574 1.03% 12+13 

5000 0.69041 0.7161 3.59% 8+9 

 

6.4. Conclusions 

In the case of conical shells under torsion, unlike the axially compressed conical shell case, the 

deformation modes are coupled. This means that the GBT system of differential equations is coupled 

and the unknowns are determined by simultaneously solving all the equations of the system (this 

poses no problem within a finite element procedure, although the computational cost obviously 

increases). Also, the geometric matrix X4ik
�  (see Eq. (3.39)) is not diagonal. The critical buckling mode 

resulting from the buckling analysis of conical shells under torsion is a combination of two similar 

shell-type deformation modes with the same order m. This torsion behavior was also remarked by 

Silvestre [120]. Besides the shell-type deformation modes, the buckling behavior of conical shells 

under torsion is also described by the “u” and “v” shear deformation modes. The introduction of shear 

deformation modes in the Matlab code adapted for conical shells under torsion was necessary to 

achieve results with differences under 5% with respect to the SFEA.  

In order to validate the proposed formulation, the results determined by SFEA were compared 

to the results determined by the GBT-based FE procedure. The numerical examples were divided into 

two main categories: (i) conical shells with constant thickness and (ii) conical shells with variable 

thickness. Then the numerical examples were analysed according to the length of the conical shell as 
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follows: (i) short conical shells (L<1000 mm), medium conical shells (L ranges 1000 between 2000 

mm) and long conical shells (L�2000 mm). 

According to the results, as the length of the conical shell increases, the critical buckling 

coefficient �c and the order of the cross section deformation mode k decrease. There were also 

exceptions when the order of the cross section deformation mode k remained unchanged. For example, 

in the case of conical shells with constant thickness, for a bottom radius r2=50 mm and length L�2000 

mm, the cross section deformation mode k remains 4+5 (see Table 6.3). Also, in the case of conical 

shells with variable thickness, the order of the cross section deformation mode remains unchanged in 

the following situations: for r2=50 mm and L ranging between 1000 and 2000 mm, k stays 6+7 (see 

Table 6.5), for r2=1000 mm and L ranging between 1000 and 2000 mm (see Table 6.5), k stays 12+13 

and for r2=50 mm and L�2000 mm, k remains 4+5 (see Table 6.6). Also, from the results one can 

remark that the index of the deformation modes m ranges between 2 and 7, which means that the order 

of the cross section deformation mode k starts from 4+5, in case of long conical shells and small 

values of the bottom radius r2, and may reach 14+15 in case of very short conical shells. For example, 

k=14+15 for a conical shell with variable thickness,r2=100 mm and L=200 mm (see Table 6.4).  

In the case of conical shells with variable thickness, according to the SFEA results and the 

normalized graphs of the modal amplitude functions �k(x), the largest torsion deformations occur in 

the area of smaller thickness (t1=1 mm), which means that the cross sections at the zone with t2=2 

mm are stiffer. Also, in the graphs of the modal amplitude functions for “v” shear deformation modes. 

a jump occurs at the middle of the span, in the transition zone between thickness values, meaning that 

the transverse shear deformations have abrupt changes in that region. 

The differences between the results determined by SFEA and the ones determined by the GBT-

based FE procedure do not exceed 5%, proving once again that the proposed formulation can be 

applied to other loading and boundary condition cases, no matter the geometric configuration of the 

analysed shell.   
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Chapter VII 
Conical Shells under Bending 

7.1. Introduction 

The present chapter studies the case of conical shells under bending. As in the case of conical 

shells under torsion, the geometric matrix X2ik
�x , where j=2 represents the bending, is not diagonal. As 

in the previous chapter, the GBT system of differential equations is coupled and the unknowns are 

determined by solving the equations of the system simultaneously.. As in the previous case, the “u” 

and “v” shear deformation modes were also inserted in the buckling analysis of conical shells under 

bending, because the differences between the results determined by SFEA and the ones determined 

by the GBT-based FE formulation exceeded 5% in their absence. Besides the shell-type and shear 

deformation modes, in the buckling of conical shells under bending also participate additional 

deformation modes. The additional deformation modes were inserted in the first order analysis and 

are mode 1, mode 2 and mode 3, presented in Chapter III, Section 3.3.2.2.  

The critical buckling mode of the conical shells under bending is described either by the 

combination of shell-type deformation modes: 5+6+9+10+13+14+17+18+21+22+25+26, which are 

symmetric with respect to the bending plane, or 3+4+7+8+11+12+15+16+19+20+23+24, which are 

non-symmetric with respect to the bending plane. This buckling behavior was initially observed in 

cylindrical shells by Silvestre [120]. 

For the numerical examples presented in the following sections the conical shell from Figure 

7.1 was considered. The conical shell is made of steel (E=210 GPa, 
=0.3), the thickness of the wall 

is t=1 mm and the top radius is r1=50 mm. The bottom radius r2 ranges between 50 mm and 1000 mm, 

while the length of the structure L ranges between 48 mm and 5000 mm. All the conical shells from 

the numerical examples presented in the next sections are cantilever conical shells. The end section 

corresponding to the bottom radius r2 is fixed (i.e. all the displacements are blocked), while the end 

section corresponding to the top radius r1 is free. 
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Figure 7.1: The geometry of the conical shell under pure bending.  

 
In order to validate the GBT-based FE formulation for this loading case, the Matlab code [6] 

was adapted to conical shells under pure bending. Then, the next step was the performance of SFEA 

using Abaqus [7]. The models created in Abaqus were meshed with S4 shell finite elements and the 

size of the mesh ranged between 2 mm and 20 mm, depending on the geometric configuration of the 

analysed conical shell. 

As in the case of axially compressed conical shells with stress concentrations presented in 

Chapter V, Section 5.3, the conical shells under bending were analysed in two steps: (i) the first step 

was the first order analysis from which the normal meridional stresses �xx
0 , normal hoop stresses ���

0  

and shear stresses �x�
0  resulted and (ii) the second step was the buckling analysis of the conical shells 

using the stresses determined from the first order analysis.   

7.2. First Order Analysis of Conical Shells under Bending 

The first order analysis of conical shells under bending was run using the algorithm presented 

in Section 4.3.1 from Chapter IV. In the case of axially compressed conical shells with stress 

concentrations, the additional deformation modes, described in Chapter III, Section 3.3.2.2, used in 

the first order analysis are as follows: the axial extension mode, the axisymmetric extension mode 

and the coupling between the axial extension and axisymmetric modes. In the case of conical shells 

under bending, the additional deformation modes used in the first order analysis are modes 1, 2 and 

3 (see  Chapter III, Section 3.3.2.2).  

 The initial load used in the SFEA and GBT models is applied at the conical shell’s free end (at 

x=0) and it is distributed along the cross-section circumference as a sinusoid (see Figure 7.2). The 

maximum value of the initial stress is Pmax=1000 N/mm2 and the variation law is  P=Pmax·sin�.  
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Figure 7.2: The distribution of the load at the free end of a conical shell under bending. 

 
The vector of equivalent nodal forces was determined by Eq. (4.6). Thus, in case of conical 

shells under bending, the vector of equivalent nodal forces for the first node at the free end of the 

structure has the following form: 

 

{ }( )
0 00 0 0 0 0 0 0 0 0 0

Te
f Pc Ps= −  

(7.1) 
  

where P0=Pmax·r1·, c=cos	, s=sin	 (see Figure 7.2). The first four components of the vector 

correspond to mode 1, the next four components correspond to mode 2 and the last four components 

correspond to mode 3.  

As in the case of conical shells under torsion, the conical shells studied in this chapter were 

divided according to their length into two categories as follows: (i) short conical shells, with L<1000 

mm, and (ii) long conical shells, with L�1000 mm. The following paragraphs present the first order 

analysis of conical shells under bending through numerical examples.  

7.2.1. Short Conical Shells 

The short conical shells considered have a length L<1000 mm. In the numerical examples for 

the first order analysis the following lengths were considered: 

(i) for conical shells with the bottom radius r2=50 mm and r2=100 mm, the lengths are as 

follows: 48 mm, 240 mm, 500 mm and 800 mm.  

(ii) for conical shells with the bottom radius r2=500 mm and r2=1000 mm, the lengths are 500 

mm and 800 mm.  

Conical shells with large values of the bottom radius r2  and L<500 mm are not considered, 

because in this case these structures would not be able to be considered as “bars”, due to the large 

value of the r2/L ratio (the slope of the conical shell’s meridian is very large).  
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Figure 7.3 represents the deformed configuration of a conical shell having the bottom radius 

r2=100 mm and alength L=48 mm resulting from SFEA with Abaqus [7], while Figure 7.4 presents 

the same deformed configuration, this time obtained from the GBT-based FE procedure performed 

with Matlab. According to the figure, at the free end, where the load is applied, the deformations are 

very large and also there are stress concentrations. These stress concentrations can be clearly observed 

in the graphs of Figure 7.5, Figure 7.6 and Figure 7.7. These figures illustrate the normal meridional 

stresses �xx
0 , the normal hoop stresses ���

0  and the shear stresses �x�
0  resulting from SFEA and also the 

GBT-based FE formulation. The stress concentrations are represented on the left side of the graphs.   

 

 
Figure 7.3: The deformed configuration of a short conical shell under bending resulting from SFEA (r2=100 mm, 

L=48 mm).  
 

 
Figure 7.4: The deformed configuration of a short conical shell under bending resulting from the GBT-based FE 

procedure performed in Matlab (r2=100 mm, L=48 mm). 
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Figure 7.5: The normal meridional stresses �xx
0  resulting from SFEA and GBT-based FE formulation for a conical 

shell with r2=100 mm and L=48 mm.  
 

 

Figure 7.6: The normal hoop stresses ���
0  resulting from SFEA and GBT-based FE formulation for a conical shell 

with r2=100 mm and L=48 mm. 
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Figure 7.7: The shear stresses �x�
0  resulting from SFEA and GBT-based FE formulation for a conical shell with 

r2=100 mm �i L=48 mm. 
 

7.2.2. Long Conical Shells  

Long conical shells have a length L�1000 mm. In the first order analysis of the numerical 

examples the following lengths were considered: 1000 mm, 2000 mm and 5000 mm. 

Figure 7.8 illustrates the deformed configuration of a conical shell with a bottom radius r2=100 

mm and length L=1000 mm, resulting from SFEA, while Figure 7.9 presents the first order deformed 

configuration of the same conical shell, but this time resulting from the GBT-based FE formulation. 

Unlike the short conical shells (i.e. r2=100 mm, L=48 mm), in the case of long conical shells the stress 

concentrations at the free end, where the load is applied, are, generally, smaller. However, the 

deformations are large, as in the previous case. According to Figure 7.10, which represents the graphs 

of the normal meridional stresses �xx
0  resulting from SFEA and the GBT-based FE procedure, at the 

free end of the structure (at the left side of the graph) the stress concentrations are so small that they 

could be neglected. But in the case of normal hoop stresses ���
0  (see Figure 7.11) and shear stresses 

�x�
0  (see Figure 7.12), the stress concentrations at the conical shell’s free end cannot be neglected. Also 

according to Figure 7.11 and Figure 7.12 stress concentrations also occur at the fixed end. 

Regardless of the length, the stress concentrations at the end sections must be taken into account 

in the buckling analysis of conical shells under bending, otherwise the differences between the results 

determined by the two modeling procedures (i.e. SFEA and GBT-based FE formulation) will exceed 

5%. 
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Figure 7.8: The deformed configuration of a long conical shell under bending resulting from SFEA (r2=100 mm, 

L=1000 mm). 
 

 
Figure 7.9: The deformed configuration of a long conical shell under bending resulting from the GBT-based FE 

procedure performed with Matlab code (r2=100 mm, L=1000 mm). 
 

 

Figure 7.10: The normal meridional stresses �xx
0  resulting from SFEA and GBT-based FE formulation for a 

conical shell with r2=100 mm and L=1000 mm. 
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Figure 7.11: The normal hoop stresses ���
0  resulting from SFEA and GBT-based FE formulation for a conical 

shell with r2=100 mm and L=1000 mm. 
 

 

Figure 7.12: The shear stresses �x�
0  resulting from SFEA and GBT-based FE formulation for a conical shell with 

r2=100 mm �i L=1000 mm. 

7.3. Buckling Analysis of Conical Shells under Bending 

The following section presents the buckling analysis of conical shells under bending. The 

buckling analysis was conducted using the stresses resulting from the first order analysis described in 

the previous section.. As in the case of conical shells under torsion, the conical shells under bending 

were divided according to their length, into two categories: (i) short conical shells with L<1000 mm 

and (ii) long conical shells with L�1000 mm.  
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7.3.1. Short Conical Shells  

The short conical shells have a length L<1000 mm. For the numerical examples presented in 

this section, the following lengths were selected:  

(i) for conical shells with a bottom radius r2=50 mm and r2=100 mm, the lengths are: 48 mm, 

240 mm, 500 mm and 800 mm.  

(ii) for conical shells with a bottom radius r2=500 mm and r2=1000 mm, the lengths are 500 

mm and 800 mm.  

The conical shells with large values of the bottom radius r2 do not have lengths L<500 mm, 

because the r2/L ratio attains large values. This means that the slope of the conical shell’s meridian is 

large and the structure may no longer be considered as a bar.  

Figure 7.13 shows the critical buckling modes of short conical shells under bending with L=48 

mm and a bottom radius r2 equal to 50 mm and 100 mm, and with L=500 mm and a bottom radius 

equal to 500 mm. Figure 7.14 presents the critical buckling modes of the same conical shells resulting 

from the GBT-based FE procedure performed with Matlab. Besides the critical buckling modes, the 

figures also illustrate the cross-section deformation modes and the values of the critical buckling 

coefficients �c. In case of bending, the buckling mode is a combination of either one of the following 

shell-type deformation modes: 

(i) Deformation modes symmetric with respect to the bending plane: 

5+6+9+10+13+14+17+18+21+22+25+26; 

(ii) Deformation modes non-symmetric with respect to the bending plane: 

3+4+7+8+11+12+15+16+19+20+23+24. 

Figure 7.15, Figure 7.16 and Figure 7.17 represent the normalized graphs of the modal 

amplitude functions �k(x) for short conical shells under bending and having the bottom radius r2 equal 

to 50 mm, 100 mm and 500 mm. According to the graphs, as the value of the bottom radius r2 increases, 

the longitudinal half-waves concentrate towards the conical shell’s free end (at the left side of the 

graph). This means that, as the value of the bottom radius r2 increases, the cross-sections from that 

area become stiffer. 

Table 7.1 presents the differences between the results determined by SFEA and the ones 

determined by the GBT-based FE procedure. The results obtained with the proposed formulation were 

obtained with 50 finite elements. According to Table 7.1, the differences between the results do not 

exceed 5%. Also, according to Table 7.1, the value of the critical buckling coefficient increases as the 

length of the structure increases, except for conical shells with r2=50 mm, where the value of the 

critical buckling coefficient decreases as the length increases. 
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Figure 7.13: The critical buckling modes of short conical shells under bending: L=48 mm, r2=50 mm and r2=100 

mm, and L=500 mm, r2=500 mm and r2=1000 mm, resulting from SFEA. 
 

 
Figure 7.14: The critical buckling modes of short conical shells under bending: L=48 mm, r2=50 mm and r2=100 

mm, and L=500 mm, r2=500 mm and r2=1000 mm, resulting from the GBT-based FE procedure with Matlab code. 
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Figure 7.15: Short conical shells under bending (r2=50 mm, L=48 mm): the graphs of the modal amplitude 

functions �k(x). 
 

 
Figure 7.16: Short conical shells under bending (r2=100 mm, L=48 mm): the graphs of the modal amplitude 

functions �k(x). 
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Figure 7.17: Short conical shells under bending (r2=500 mm, L=500 mm): the graphs of the modal amplitude 

functions �k(x). 
 

Table 7.1: SFEA vs GBT-FEM results for short conical shells under bending. 
r2=50 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences 

48 1.1904 1.1999 0.79% 

240 1.0749 1.0831 0.76% 

500 1.0575 1.0772 1.83% 

r2=100 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences 

48 0.0923528 0.0917 0.71% 

240 0.34877 0.3556 1.92% 

500 0.57953 0.5719 1.33% 

r2=500 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences 

500 0.094919 0.0938 1.19% 

800 0.14984 0.1499 0.04% 

r2=1000 mm 

L  

[mm] 

�c SFEA �c GBT-

FEM 

Differences 

500 0.0405264 0.0397 2.08% 

800 0.0688067 0.0682 0.89% 
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7.3.2. Long Conical Shells  

Long conical shells have a length L�1000 mm. For the numerical examples presented in this 

section the following lengths were considered: 1000 mm, 2000 mm and 5000 mm. 

Figure 7.18 presents the critical buckling modes of the long conical shells under bending having 

a length L=2000 mm and the values of the critical buckling coefficients  �c resulting from SFEA. 

Figure 7.19 illustrates the critical buckling modes of the same conical shells resulting from the GBT-

based FE procedure performed with Matlab. Figure 7.20, Figure 7.21, Figure 7.22 and Figure 7.23 

represent the normalized graphs of the modal amplitude functions �k(x) for long conical shells under 

bending with L=2000 mm and r2 equal to 50 mm, 100 mm, 500 mm and 1000 mm.  

As in the case presented in the previous section, the value of the critical buckling coefficient 

increases with the length, except for conical shells with r2=50 mm, where the value of �c decreases as 

the length increases. Also, the buckling mode is a combination of several shell-type deformation 

modes. In case of long conical shells, the longitudinal half-waves of the modal amplitude functions 

are concentrated towards the conical shell’s free end (at the left side of the graph), which means that 

the end section, where the load is applied, is the area where most of the buckling deformations are 

concentrated. Also, according to the graphs of the modal amplitude functions, the shell-type 

deformation modes 3+4+7+8 have the shape of the deformed cantilever under bending.  

Table 7.2 shows the differences between the results determined by the two modeling procedures 

and analysis (i.e. SFEA and GBT-based FE formulation). The differences do not exceed 5%.   
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Figure 7.18: The critical buckling modes of long conical shells under bending having the length L=2000 mm 

resulting from SFEA. 
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Figure 7.19: The critical buckling modes of long conical shells under bending having the length L=2000 mm 

resulting from the GBT-based FE procedure performed with Matlab code. 
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Figure 7.20: Long conical shells under bending (r2=50 mm, L=2000 mm): the graphs of the modal amplitude 

functions �k(x). 
 

 
Figure 7.21: Long conical shells under bending (r2=100 mm, L=2000 mm): the graphs of the modal amplitude 

functions �k(x). 
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Figure 7.22: Long conical shells under bending (r2=500 mm, L=2000 mm): the graphs of the modal amplitude 

functions �k(x). 
 

 
Figure 7.23: Long conical shells under bending (r2=1000 mm, L=2000 mm): the graphs of the modal amplitude 

functions �k(x). 
 



 
 

161 
 

Table 7.2: SFEA vs GBT-FEM results for short conical shells under bending. 
r2=50 mm 

L  [mm] �c SFEA �c GBT-

FEM 

Differences 

1000 1.1168 1.0773 3.67% 

2000 1.0408 1.0754 3.22% 

5000 0.77438 0.8013 3.36% 

r2=100 mm 

L  [mm] �c SFEA �c GBT-

FEM 

Differences 

1000 0.79257 0.7755 2.20% 

2000 0.93976 0.9684 2.96% 

5000 1.1348 1.1409 0.53% 

r2=500 mm 

L  [mm] �c SFEA �c GBT-

FEM 

Differences 

1000 0.18484 0.1838 0.57% 

2000 0.33473 0.3304 1.31% 

5000 0.69759 0.7116 1.97% 

r2=1000 mm 

L  [mm] �c SFEA �c GBT-

FEM 

Differences 

1000 0.0881629 0.0869 1.45% 

2000 0.17525 0.1744 0.49% 

5000 0.41296 0.4338 4.80% 

 

7.4. Conclusions 

As in the case of conical shells under torsion, for conical shells under bending the geometric 

matrix X2ik
�x  (where j=2 represents bending) is not diagonal, which means that the GBT system of 

differential equations is coupled. Unlike conical shells under axial compression or torsion, where the 

cross-section deformation mode is defined by the number of circumferential half-waves k, in the case 

of conical shells under bending the cross-section deformation mode is a combination of shell-type 

and shear deformation modes, as follows: (i) deformation modes symmetric with respect to the 

bending plane:  5+6+9+10+13+14+17+18+21+22+25+26 or (ii) deformation modes non-symmetric 

with respect the bending plane: 3+4+7+8+11+12+15+16+19+20+23+24. 

The analysis of conical shells under bending consisted into two steps, as follows: (i) a first order 

analysis where the normal meridional, normal hoop and shear stresses were determined and (ii) a 

buckling analysis using the stresses determined from the first order analysis. Unlike the first order 

analysis of the axially compressed conical shells with stress concentrations (see Chapter V, Section 
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5.3), the first order analysis of conical shells under bending is described by the following deformation 

modes: (i) mode 1 (see Eq. (3.25)), (ii) mode 2 (see Eq. (3.26)) and (iii) mode 3 (see Eq. (3.27)). 

According to the first order analysis, regardless of the length of the conical shell, at the end sections 

stress concentrations occur (see Figure 7.5, Figure 7.6, Figure 7.7, Figure 7.11 and Figure 7.12) which 

must be taken into account in the buckling analysis, in order to have accurate results.  

According to the buckling analysis, the value of the critical buckling coefficient �c  increases 

along with the length L, except for conical shells with a bottom radius r2=50 mm, where the critical 

buckling coefficient decreases as the length increases. Also, as the value of the bottom radius r2 

increases, the longitudinal half-waves of the modal amplitude functions �k(x) are concentrating 

towards the free end of the analysed conical shell, which shows that the cross-sections from the area 

of the bottom radius r2 become stiffer as the value of r2 increases. For long conical shells (L�1000 

mm), the modal amplitude functions of the shell-type deformation modes 3+4+7+8 have the shape of 

a deformed cantilever beam under pure bending (see Figure 7.20, Figure 7.21, Figure 7.22 and Figure 

7.23). 

The differences between the results determined by SFEA and the ones determined by the GBT-

based FE formulation do not exceed 5%, proving once again that the proposed formulation can be 

applied in case of more complex loads, such as bending.   
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Chapter VIII 
Conclusions 

8.1. Conclusions of the Research 

As it was demonstrated in the case studies presented in the previous chapters, the Generalized 

Beam Theory is a very efficient method to determine the buckling loads and the buckling modes of 

thin walled structures. Initially it was believed that GBT could only be applied for prismatic thin 

walled bars with constant cross-section along the longitudinal axis. Recent studies, presented in detail 

in Chapter II, Sections 2.5.3 and, respectively 2.5.4, have demonstrated that GBT could be extended 

for other types of thin walled structures such as bars with curved longitudinal axis [98], structures 

with circular and elliptic cross-section [120], [121] and structures with variable cross-section along 

the longitudinal axis [3], [4]. 

The following thesis presented the GBT extension for circular isotropic conical shells and the 

GBT-based Finite Element (FE) formulation for the first order and buckling analysis of these type of 

structures. The advantages of the GBT-based FE formulation, compared to SFEA, are the following: 

(i) Fewer degrees of freedom are necessary to determine results with a precision similar to that 

obtained with refined SFEA; 

(ii) In coupled instability problems, the proposed formulation provides the degree of modal 

participation which also provides valuable information regarding the buckling behavior of the 

analysed structures.  

From the numerical examples presented in the previous chapters the following general remarks 

can be traced: 

(i) The differences between the values of the critical buckling coefficients determined by SFEA 

and the ones determined by the proposed formulation do not exceed 5%, which means that the 

proposed formulation is considered valid and accurate. 

(ii) The proposed formulation can be applied to any type of load, boundary conditions and 

geometric configurations (i.e. constant thickness or stepped variable thickness), which shows the fact 

that the GBT-based FE formulation is flexible. 

(iii) The shear deformation modes, presented in Chapter III, Section 3.3.2.2., have significant 

effects on the final results in some load cases, as torsion or pure bending, in some cases of boundary 

conditions or geometric configuration (for example, in the case of axially compressed short conical 

shells).  

The following sections summarize the conclusions of every case study described in this thesis. 
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8.1.2. Conclusions Concerning Axially Compressed Conical Shells 

For axially compressed conical shells there were two main cases examined: (i) conical shells 

without stress concentrations and (ii) conical shells with stress concentrations. The conical shells 

without stress concentrations are the ones who have both end sections supported and the types of 

supports are fixed end, simple support or combinations between these. In this case, the stress 

concentrations that occur at the end sections have very low values and can be neglected. Therefore, 

the normal hoop stresses were neglected, while the normal meridional stresses were approximated by 

simplified expressions. The conical shells with important stress concentrations are cantilever 

structures. The axial force is applied at the free end, so at the respective end section stress 

concentrations occur. In this case, the normal hoop stresses can no longer be neglected, while the 

normal meridional stresses cannot be approximated by simplified expressions. The analysis of conical 

shells with stress concentrations had two steps: (i) the first order analysis where the normal merdional 

and hoop stresses were determined and (ii) the buckling analysis where the stresses determined in the 

first step were used.  

In the case of short conical shells and, respectively conical shells with variable thickness, the 

differences between the results determined by the proposed formulation and the ones determined by 

SFEA did not exceed 5% if the shear deformation modes were included in the buckling analysis. 

For the axially compressed conical shells, in the case where the shear deformation modes were 

not included in the analysis, the geometric matrix X1ik
�x  is diagonal. This means that the GBT system 

of differential equations is not coupled and the system’s unknowns, the modal amplitude functions 

�k(x), may be determined by solving the equations separately for each deformation mode included in 

the analysis. This aspect simplifies the buckling analysis of axially compressed conical shells unlike 

other methods used in current practice, such as SFEA. 

8.1.3. Conclusions Concerning Conical Shells under Torsion 

Unlike axially compressed conical shells, in case of conical shells under torsion the geometric 

matrix X4ik
�  is not diagonal. This means that the GBT system of differential equations is coupled, 

therefore the unknowns are determined by solving the system’s equations simultaneously (this poses 

no problem within the developed FEM framework). The buckling mode that results in this case is a 

combination of two similar deformation modes with the same index m.  

According to the analysed numerical examples, generally, the value of the critical buckling 

coefficient and the order of the shell-type deformation mode k decrease as the length of the structure 

increases. In the case of conical shells with variable thickness, in the thickness transition zone, large 
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deformations occur which are represented in the graphs of the modal amplitude functions. More 

exactly, deformations are observed in the graphs of the “v” shear modes.  

8.1.4. Conclusions Concerning Conical Shells under Bending 

The case of conical shells under bending is special since, unlike the two other cases, the 

buckling phenomenon is more complex. The analysis of conical shells under bending had two steps: 

(i) the first order analysis where the normal and shear stresses were determined and (ii) the buckling 

analysis where the stresses determined in the previous step were used.  

As in the case of conical shells under torsion, the geometric matrix X2ik
�x  is not diagonal and the 

GBT system of differential equations is coupled. Therefore, the unknowns are determined by solving 

the system’s equations simultaneously. The buckling mode that results from the analysis is a 

combination of shell-type and shear deformation modes as follows: (i) deformation modes symmetric 

with respect to the bending plane: 5+6+9+10+13+14+17+18+21+22+25+26 or (ii) deformation 

modes non-summetric with respect to the bending plane: 3+4+7+8+11+12+15+16+19+20+23+24. 

According to the results obtained, the value of the critical buckling coefficient increases as the 

length of the structure increases, except for conical shells with a bottom radius r2=50 mm, where the 

value of the critical buckling coefficient decreases as the length of the structure increases. This shows 

that, as the value of the bottom radius r2 increases, the stiffness of the conical shell under bending 

increases as well.  

8.2. Personal Contributions 

The personal contributions of the thesis are as following: 

(i) The introduction of the shear deformation modes in case of short conical shells with variable 

thickness under axial compression, in case of conical shells under torsion and in case of conical shells 

under bending. 

(ii) The introduction of the additional deformation modes for the first order analysis of axially 

compressed conical shells with stress concentrations and for conical shells under bending. 

(iii) The determination of the GBT cross-section stiffness matrices for shear deformation 

modes. 

(iv) Determination of cross-section stiffness matrices for additional deformation modes, 

showing that the pre-buckling stresses need to be considered. 

(v) The adaptation of the GBT based FE formulation to the first order analysis of conical shells 

under axial compression, torsion and bending.  
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(vi) The adaptation of the GBT based FE formulation to the buckling analysis of conical shells 

under axial compression, torsion and bending. 

8.3. The Valorification of Results 

The results determined from the analysed case studies were published in the following scientific 

papers: 

(i) Adina-Ana Mure�an, Mihai Nedelcu and Rodrigo Gonçalves, „GBT-based FE formulation 

to analyse the buckling behaviour of isotropic conical shells with circular cross-section”, Thin Walled 

Structures, vol. 134, pp. 84 – 101, Jan. 2019. 

(ii) Mihai Nedelcu, Adina-Ana Mure�an, “GBT-based Finite Element formulation for elastic 

buckling analysis of conical shells”, EUROSTEEL 2017, September 13–15, 2017, Copenhagen, 

Denmark. 

(iii) Adina-Ana Mure�an, Mihai Nedelcu, “Analiza la flambaj elastic a structurilor conice 

folosind formularea în Element Finit bazat� pe Teoria Generalizat� a Grinzii”, A 15-a CONFERIN�� 

NA�IONAL� DE CONSTRUC�II METALICE, IA�I, 16 – 17 Noiembrie 2017. 

(iv) Adina-Ana Mure�an, Rodrigo Gonçalves and Mihai Nedelcu, „GBT Model For The 

Buckling Analysis Of Conical Shells With Stress Concentrations”, Eighth International Conference 

on THIN-WALLED STRUCTURES, ICTWS 2018, Lisbon, Portugal, July 24-27, 2018. 

(v) Adina-Ana Mure�an, Mihai Nedelcu, „The GBT based Finite Element formulation to 

analyse the buckling behaviour of conical shells”, C65 International Conference, ”Tradition and 

Innovation - 65 Years of Constructions in Transilvania”, 15 – 17 November 2018, Cluj-Napoca, 

Romania.  

8.4. Future Research 

In the following thesis the GBT-based Finite Element formulation was applied to perform 

buckling analyses of circular conical shells under axial compression, under torsion and under bending. 

The proposed formulation may be applied to the buckling analysis of conical shells under other types 

of loads. For example, the proposed formulation may be applied in case of conical shells under 

eccentric compression. These cases may be the subject of future research, which will contribute to the 

investigation of the buckling behavior of conical shells. 

Also, the GBT and the GBT-based FE formulation may be adapted for the analysis of arbitrary 

shells of revolution, meaning shells with curved meridian. GBT could also be adapted for thin-walled 

structures having arbitrary variable cross section.  
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Annex I 
The Analytical Expressions of the Cross Section Stiffness 

Matrices 

The pre-buckling stresses are considered constant along the cross section.  

Index definition: 
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B. „u” Shear Modes (u) 
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D. Shell-type Modes Coupled with “u” Shear Modes 
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E. Shell-type Modes Coupled with “v” Shear Modes 
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F. „u” Shear Modes Coupled with „v” Shear Modes 
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Annex II 
The List of Figures 

Chapter I: Introduction 

Figure 1.1: Pure buckling modes for thin walled bars [2]. 

Chapter III: Generalized Beam Theory 

Figure 3.1: The GBT coordinate system and its corresponding displacements. 

Figure 3.2: The discretization of a lipped channel section. 

Figure 3.3: The diagonalization patterns of B and C matrices and the transformation of the 

modal matrix UI. 

Figure 3.4: The diagonalization pattern of D4x4 matrix and the transformation of C4x4 and UII 

matrices. UII matrices.  

Figure 3.5: The diagonalization pattern of K3x3 matrix and the transformation of UIII and C3x3 

matrices. 

Figure 3.6: The geometry of the conical shell. 

Figure 3.7: The shell-type deformation modes. 

Figure 3.8: “u” shear deformation mode (k=4). 

Figure 3.9: The additional deformation modes: a) axial extension, b) axisymmetric extension 

and c) torsion. 

Chapter IV: The GBT-based Finite Element Formulation 

Figure 4.1: The shape functions. 

Figure 4.2: The flowchart of the GBT-based FE formulation for the first order analysis. 

Figure 4.3: The flow chart of the GBT-based FE formulation for the buckling analysis. 

Chapter V: Axially Compressed Conical Shells 

Figure 5.1: The geometry of the axially compressed conical shell. 

Figure 5.2: The critical buckling modes of long simply supported conical shells resulting from 

SFEA. 

Figure 5.3: Long simply supported conical shells: the graphs of the modal amplitude functions 

�k(x). 

Figure 5.4: The finite element convergence of the long simply supported conical shells. 
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Figure 5.5: The critical buckling modes of long fixed end conical shells resulting from SFEA. 

Figure 5.6: Long fixed end conical shells: the graphs of the modal amplitude functions �k(x). 

Figure 5.7: The critical buckling modes of long conical shells simply supported at both end and 

at the middle of the span resulting from SFEA. 

Figure 5.8: Long conical shells simply supported at both ends and at the middle of the span: the 

graphs of the modal amplitude functions �k(x). 

Figure 5.9: The critical buckling modes of long conical shells simply supported at one end at 

fixed at the other one resulting from SFEA. 

Figure 5.10: Long conical shells simply supported at an end and fixed at the other one: the 

graphs of the modal amplitude functions �k(x). 

Figure 5.11: The critical buckling modes of short simply supported conical shells resulting from 

SFEA. 

Figure 5.12: Short simply supported conical shells: the critical buckling modes resulting from 

the GBT-based FE formulation in Matlab. 

Figure 5.13: Short simply supported conical shells: the graphs of the modal amplitude functions 

�k(x).  

Figure 5.14: The critical buckling modes of short fixed end conical shells resulting from SFEA. 

Figure 5.15: Short fixed end conical shells: the critical buckling modes resulting from the GBT-

based FE formulation in Matlab. 

Figure 5.16: Short fixed end conical shells: the graphs of the modal amplitude functions �k(x). 

Figure 5.17: The geometry of the axially compressed conical shell with variable thickness. 

Figure 5.18: The critical buckling modes of simply supported conical shells with variable 

thickness resulting from SFEA. 

Figure 5.19: Simply supported conical shells with variable thickness: the critical buckling 

modes resulting from the GBT-based FE formulation in Matlab. 

Figure 5.20: Simply supported conical shells with variable thickness: the graphs of the modal 

amplitude functions �k(x). 

Figure 5.21: The critical buckling modes of fixed end conical shells with variable thickness 

resulting from SFEA. 

Figure 5.22: Fixed end conical shells with variable thickness: the critical buckling modes 

resulting from the GBT-based FE formulation in Matlab. 

Figure 5.23: Fixed end conical shells with variable thickness: the graphs of the modal amplitude 

functions �k(x). 
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Figure 5.24: The displacements at the free end of an axially compressed cantilever conical shell 

resulting from SFEA. The scaling factor is 200. 

Figure 5.25: The pre-buckling normal meridional stresses �xx
0  of an axially compressed 

cantilever conical shell with the radius r2=1000 mm. 

Figure 5.26: The pre-buckling normal hoop stresses ���
0  of an axially compressed cantilever 

conical shell with the radius r2=1000 mm. 

Figure 5.27: The critical buckling modes of long cantilever conical shells resulting from SFEA. 

Figure 5.28: Cantilever conical shells: the critical buckling modes resulting from the GBT-

based FE formulation in Matlab. 

Figure 5.29: Long cantilever conical shells: the graphs of the modal amplitude functions �k(x). 

Figure 5.30: The critical buckling modes of cantilever conical shells with simple support at the 

middle of the length resulting from SFEA 

Figure 5.31: Cantilever conical shells with a simple support at the middle of the length: the 

critical buckling modes resulting from the GBT-based FE formulation in Matlab. 

Figure 5.32: Cantilever conical shells with simple support at the middle of the length: the graphs 

of the modal amplitude functions �k(x). 

Figure 5.33: The critical buckling modes of short cantilever conical shells resulting from SFEA. 

Figure 5.34: Short cantilever conical shells: the critical buckling modes resulting from the GBT-

based FE formulation in Matlab. 

Figure 5.35: Short cantilever conical shells: the graphs of the modal amplitude functions �k(x). 

Figure 5.36: The critical buckling modes of cantilever conical shells with variable thickness 

resulting from SFEA. 

Figure 5.37: Cantilever conical shells: the critical buckling modes resulting from the GBT-

based FE formulation in Matlab. 

Figure 5.38: Cantilever conical shells with variable thickness: the graphs of the modal amplitude 

functions �k(x). 

Figure 5.39: The discretization of the cantilever conical shell with finite elements having 

variable length. 

Figure 5.40: The differences between SFEA vs GBT results for different numbers of finite 

elements of the GBT model. 

Chapter VI: Conical Shells under Torsion 

Figure 6.1: The geometry of the conical shell under torsion. 
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Figure 6.2: The critical buckling modes of short conical shells under torsion having the length 

L=800 mm resulting from SFEA. 

Figure 6.3: The critical buckling modes of short conical shells under torsion having the length 

L=800 mm resulting from the GBT-based FE formulation performed with Matlab code. 

Figure 6.4: Short conical shells under torsion: the graphs of the modal amplitude functions 

�k(x). 

Figure 6.5: The critical buckling modes of medium conical shells under torsion having the 

length  L=1500 mm resulting from SFEA. 

Figure 6.6: The critical buckling modes of medium conical shells under torsion having the 

length  L=1500 mm resulting from the GBT-based FE formulation performed with Matlab code. 

Figure 6.7: Medium conical shells under torsion: the graphs of the modal amplitude functions 

�k(x). 

Figure 6.8: The critical buckling modes of long conical shells under torsion having the length 

L=5000 mm resulting from SFEA. 

Figure 6.9: The critical buckling modes of long conical shells under torsion having the length 

L=5000 mm resulting from the GBT-based FE formulation performed with Matlab code. 

Figure 6.10: Long conical shells under torsion: the graphs of the modal amplitude functions 

�k(x). 

Figure 6.11: The geometry of the conical shell under torsion with variable thickness. 

Figure 6.12: The critical buckling modes of short conical shells under torsion with variable 

thickness having the length L=800 mm resulting from SFEA. 

Figure 6.13: The critical buckling modes of short conical shells under torsion with variable 

thickness having the length L=800 mm resulting from the GBT-based FE procedure performed with 

Matlab code. 

Figure 6.14: Short conical shells under torsion with variable thickness: the graphs of the modal 

amplitude functions �k(x). 

Figure 6.15: The critical buckling modes of medium conical shells under torsion with variable 

thickness having the length L=1500 mm resulting from SFEA. 

Figure 6.16: The critical buckling modes of medium conical shells under torsion with variable 

thickness having the length L=1500 mm resulting from the GBT-based FE procedure with Matlab 

code. 

Figure 6.17: Medium conical shells under torsion with variable thickness: the graphs of the 

modal amplitude functions �k(x). 
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Figure 6.18: The critical buckling modes of long conical shells under torsion with variable 

thickness having the length L=5000 mm resulting from SFEA. 

Figure 6.19: The critical buckling modes of long conical shells under torsion with variable 

thickness having the length L=5000 mm resulting from the GBT-based FE procedure performed in 

Matlab. 

Figure 6.20: Long conical shells under torsion with variable thickness: the graphs of the modal 

amplitude functions �k(x). 

Chapter VII: Conical Shells under Bending 

Figure 7.1: The geometry of the conical shell under pure bending. 

Figure 7.2: The distribution of the load at the free end of a conical shell under bending. 

Figure 7.3: The deformed configuration of a short conical shell under bending resulting from 

SFEA (r2=100 mm, L=48 mm). 

Figure 7.4: The deformed configuration of a short conical shell under bending resulting from 

the GBT-based FE procedure performed in Matlab (r2=100 mm, L=48 mm). 

Figure 7.5: The normal meridional stresses �xx
0  resulting from SFEA and GBT-based FE 

formulation for a conical shell with r2=100 mm and L=48 mm. 

Figure 7.6: The normal hoop stresses ���
0  resulting from SFEA and GBT-based FE formulation 

for a conical shell with r2=100 mm and L=48 mm. 

Figure 7.7: The shear stresses �x�
0  resulting from SFEA and GBT-based FE formulation for a 

conical shell with r2=100 mm �i L=48 mm. 

Figure 7.8: The deformed configuration of a long conical shell under bending resulting from 

SFEA (r2=100 mm, L=1000 mm). 

Figure 7.9: The deformed configuration of a long conical shell under bending resulting from 

the GBT-based FE procedure performed with Matlab code (r2=100 mm, L=1000 mm). 

Figure 7.10: The normal meridional stresses �xx
0  resulting from SFEA and GBT-based FE 

formulation for a conical shell with r2=100 mm and L=1000 mm. 

Figure 7.11: The normal hoop stresses ���
0  resulting from SFEA and GBT-based FE formulation 

for a conical shell with r2=100 mm and L=1000 mm. 

Figure 7.12: The shear stresses �x�
0  resulting from SFEA and GBT-based FE formulation for a 

conical shell with r2=100 mm �i L=1000 mm. 

Figure 7.13: The critical buckling modes of short conical shells under bending: L=48 mm, 

r2=50 mm and r2=100 mm, and L=500 mm, r2=500 mm and r2=1000 mm, resulting from SFEA. 
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Figure 7.14: The critical buckling modes of short conical shells under bending: L=48 mm, 

r2=50 mm and r2=100 mm, and L=500 mm, r2=500 mm and r2=1000 mm, resulting from the GBT-

based FE procedure with Matlab code. 

Figure 7.15: Short conical shells under bending (r2=50 mm, L=48 mm): the graphs of the modal 

amplitude functions �k(x). 

Figure 7.16: Short conical shells under bending (r2=100 mm, L=48 mm): the graphs of the 

modal amplitude functions �k(x). 

Figure 7.17: Short conical shells under bending (r2=500 mm, L=500 mm): the graphs of the 

modal amplitude functions �k(x). 

Figure 7.18: The critical buckling modes of long conical shells under bending having the length 

L=2000 mm resulting from SFEA. 

Figure 7.19: The critical buckling modes of long conical shells under bending having the length 

L=2000 mm resulting from the GBT-based FE procedure performed with Matlab code. 

Figure 7.20: Long conical shells under bending (r2=50 mm, L=2000 mm): the graphs of the 

modal amplitude functions �k(x). 

Figure 7.21: Long conical shells under bending (r2=100 mm, L=2000 mm): the graphs of the 

modal amplitude functions �k(x). 

Figure 7.22: Long conical shells under bending (r2=500 mm, L=2000 mm): the graphs of the 

modal amplitude functions �k(x). 

Figure 7.23: Long conical shells under bending (r2=1000 mm, L=2000 mm): the graphs of the 

modal amplitude functions �k(x). 
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Annex III 
The List of Tables 

Chapter V: Axially Compressed Conical Shells 

Table 5.1: SFEA vs GBT-FEM results for long simply supported conical shells. 

Table 5.2: SFEA vs GBT-FEM results for long fixed end conical shells. 

Table 5.3: SFEA vs GBT-FEM results for long conical shells simply supported at both ends and 

at the middle of the span. 

Table 5.4: SFEA vs GBT-FEM results for long conical shells simply supported at one end and 

fixed at the other one. 

Table 5.5: SFEA vs GBT-FEM results for short simply supported conical shells. 

Table 5.6: SFEA vs GBT-FEM results for short fixed end conical shells. 

Table 5.7: SFEA vs GBT-FEM results for simply supported conical shells with variable 

thickness. 

Table 5.8: SFEA vs GBT-FEM results for fixed end conical shells with variable thickness. 

Table 5.9: SFEA vs GBT-FEM results when local effects are taken/not taken into account. 

Table 5.10: SFEA vs GBT-FEM results for cantilever conical shells with simple support at the 

middle of the length. 

Table 5.11: SFEA vs GBT-FEM results for short cantilever conical shells. 

Table 5.12: SFEA vs GBT-FEM results for cantilever conical shells with variable thickness 

when shear deformation modes are taken/not taken into account. 

Table 5.13: The differences between SFEA vs GBT results for different sizes of the FE mesh. 

Chapter VI: Conical Shells under Torsion 

Table 6.1: SFEA vs GBT-FEM results for short conical shells under torsion. 

Table 6.2: SFEA vs GBT-FEM results for medium conical shells under torsion. 

Table 6.3: SFEA vs GBT-FEM results for long conical shells under torsion. 

Table 6.4: SFEA vs GBT-FEM results for short conical shells under torsion with variable 

thickness. 

Table 6.5: SFEA vs GBT-FEM results for medium conical shells under torsion with variable 

thickness. 

Table 6.6: SFEA vs GBT-FEM results for long conical shells under torsion with variable 

thickness. 
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Chapter VII: Conical Shells under Bending 

Table 7.1: SFEA vs GBT-FEM results for short conical shells under bending. 

Table 7.2: SFEA vs GBT-FEM results for short conical shells under bending. 
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