

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Civil Constructions and Management
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Civil Engineering (CE)
1.7	Form of education	Full time
1.8	Subject code	59.20

2. Data about the subject

2.1	Subject name		Agricultural Constructions					
2.2	Subject area			Constructions				
2.3	Course responsible/lecturer			Lecturer Ruxandra Darmon				
2.4	Teachers in charge of seminars			Lecturer Ruxan	dra Darr	non		
2.5 stuc	Year of ly	IV	2.6 Semester	2	2 2.7 Assessment Exam 2.8 Subject category DID/DO			DID/DOP

3. Estimated total time

3.1 Number of	umber of hours per week		3.2 of which, course:	2	3.3	1	
					applications:		
3.4 Total hours	s in the curriculum	52	35 of M	hich, course:	28	3.6	14
5.4 Total Hours		52	5.5 OI W		20	applications:	14
Individual stu	dy				•		hours
Manual, lectu	re material and note	s, biblio	graphy				20
Supplementary study in the library, online and in the field						12	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						14	
Tutoring						12	
Exams and tests						4	
Other activities						-	
3.7 Total hours of individual study 62							
3.8 Total ho	ours per semester		124				
3.9 Number	r of credit points		4				

4. Pre-requisites (where appropriate)

4.1	Curriculum	Reinforced and Prestressed Concrete, Steel Constructions
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Amphitheater with blackboard
5.2	For the applications	Classroom with blackboard and computers with structural

str. Memorandumului nr.28, 400114 Cluj-Napoca, România __tel. +40-264-401200, fax +40-264-592055, secretariat tel. +40+264-202209, fax +40-264-202280_ http://www.utcluj.ro/

computation software

6. Specific competences

		Theoretical knowledge:
		To know the normal performance for designing general plans of farm buildings;
		To know the performance criteria for the design of agricultural buildings;
		To meet performance requirements standardized construction of livestock;
		To meet the performance requirements of standardized production plant construction;
		To know the types of structural systems of livestock buildings;
		To know the types of structural building systems for vegetable production;
		To know the specific performance requirements of the enclosure of livestock buildings;
	ona	
	ssi	After completing the subject, students will be able to:
	Professional competences	- produce floor plans and cross sections correlated with technologies of livestock
	F S	buildings and maintenance of bio factors;
		- determine the type of structure functions properly with the livestock building
		functionality and technology;
		- design closure elements correlated with the protection structure and the microclimate;
		- be calculated in terms of heat engineering closure elements of the building livestock;
		- able to calculate the energy balance of the building livestock;
		- prepare a greenhouse design;
		- decide on measures of corrosion protection of construction elements.
	Ð	Presentation of a technical report incorporating the specifically bio-tech elements for
2	competence	agricultural buildings, structural elements and description of the resistance structure.
Ś	oete	Supporting an oral presentation of the designed construction.
P	dmo	
	8	
-		

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing abilities to identify, formulate and solve structural engineering problems
7.2	Specific objectives	Developing abilities to design or check structural and specifically members to fulfil strength, stiffness and stability requirements

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1.	Elements of design theory of agricultural construction: classification, performance criteria, performance targets and specific environmental factors	Lecture with	
2.	The design of general plan of livestock farms correlated with environmental requirements	discussions	
3.	Constructions for zootechnical field: performance		

		1	1		
	criteria, indoor and outdoor environmental				
	factors, technologically and specifically functional				
	elements				
4.	Technological and functional elements for housing cattle and swine species				
5.	Technological and functional elements for housing poultry and equine species				
	Structural design of housing constructions:				
6.	construction systems, schemes and static load calculation features, dimensioning the elements of resistance structure				
7.	Structural systems with load-bearing walls				
8.	Structural framing systems with openings 9-15m				
9.	Structural framing systems span 15- 24m				
	Hygrothermal design of agricultural buildings:				
10.	indoor comfort parameters, specific design problems				
11.	The energetically design of the farms buildings. Constructive details of envelope elements.				
12.	Aggressive environments. Corrosion protection. Basics elements to refurbish the agricultural building envelope.				
13.	Functional elements, environmental factors and resistance structures for greenhouses.				
14.	Functional elements, environmental factors and resistance structures for grains storage and fruit warehouse.				
Biblic	ography				
Pante	el, E., Ioani, A., Popa, A., Nedelcu, M., <i>Strength of Materi</i> Napoca Star, 2009.	als. Theory and Pro	oblems, Part II,		
	el, E., Ioani, A., Turda., D., Popa A., Lessons of Strength	of Materials. Theor	y and		
	lems, Part II, Cluj-Napoca, 2004.				
	, J.M, Goodno, B.J., Mechanics of Materials, Eighth edition	on, Edit. CENGAGE	Learning,		
2012 Hibbe	eler, R.C., <i>Mechanics of materials</i> , Eighth edition, Pearso	n Prentice Hall 201	11		
	, F. P., Johnston Jr., E.R., DeWolf, J.T., Mazurek, D.F., <i>N</i>				
	n, McGraw-Hill, 2012.				
Megs	son, T.G.H., Structural and stress analysis, Second Editio	n, Elsevier Butterw	orth-		
	emann, 2005.				
	lva, V. D., <i>Mechanics and strength of materials</i> , Springer- si, A.P., Schmidt, R.J., Sidebottom, O.M., <i>Advanced mec</i>	•	Eifth Edition		
	Wiley & Sons, Inc., 1993.	names or materials,			
		Teaching			
8.2. /	Applications/Seminars	methods	Notes		
1.	Study location of farming - livestock and vegetables	Problems solving with			
2.	Designing the floor plan and cross-section for a				

OF CLUJ-NAPOCA

	building within a Farm	discussions				
3.	The study of structural resistance system for a livestock building - structural computation and dimensioning of resistence elements					
4.	The energetically design of the building and envelope elements.					
5.	Study location of farming - livestock and vegetables					
6.	Designing the floor plan and cross-section for a building within a farming - livestock or vegetables					
7.	The energetically design of the building and envelope elements.					
Biblic	Bibliography					
	Gere, J.M, Goodno, B.J., <i>Mechanics of Materials</i> , Eighth edition, Edit. CENGAGE Learning, 2012.					

Pantel, E., Ioani, A., Popa, A., Nedelcu, M., Strength of Materials. Theory and Problems, Part II, Edit. Napoca Star, 2009.

Pantel, E., Ioani, A., Turda., D., Popa A., Lessons of Strength of Materials. Theory and Problems, Part II, Cluj-Napoca, 2004.

Hibbeler, R.C., Mechanics of materials, Eighth edition, Pearson Prentice Hall, 2011.

Beer, F. P., Johnston Jr., E.R., DeWolf, J.T., Mazurek, D.F., Mechanics of materials, Sixth edition, McGraw-Hill, 2012.

Ye, J., Structural and stress analysis. Theories, tutorials and examples, Taylor & Francis, 2008. Hartsuijker, C., Welleman, J.W., Engineering mechanics. Volume 2: Stresses, Strains, Displacements, Springer, 2007.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be needed for civil engineers who work in design and buildings firms, and are fundamental for those who will follow master and doctoral programmes in the field of Civil Engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
Course	2 theory subjects	Oral examination	70%		
Applications	3 questions from the design of the agricultural building studied	Written examination	30%		
10.4 Minimum standard of performance					
To written examination is eliminatory. The minimum mark required to pass the written examination is 5 (five).					
The minimum average mark of the two theory subjects is 5 (five). Attendance at laboratory works, solving and submitting the design of one agricultural building is mandatory under the provisions of ECTS Regulation.					

Date of completion september 2016 Course Tenure

Lecturer , Dr Eng_MSc Ruxandra Dârmon Course Instructor

Lecturer, Dr Eng_MSc Ruxandra Dârmon

Date of approval within department

.....

Department Manager Senior Lecturer, Dr Eng_Claudiu Aciu