SUBJECT PRESENTATION FORM

Subject name	Mechanics II
Field of study	Civil Engineering
Main field of study	CCIA
Subject code	41321108
Subject main teacher	Prof.dr.ing. Pavel ALEXA – pavel.alexa@staff.utcluj.ro
Colaborators	Ovidiu PRODAN
Department	Structural Mechanics
Faculty	Civil Engineering

Sem.	Type of subject	Course	Appl	licatio	ons	Course	App	olica	tions	Individual Study	'AL dits		Type of examination
		[clas	[classes/week]			[classes/semester.]				er.]	LO	Cre	
		С	S	L	Р	С	S	L	Р		L	Ŭ	
2	Fundamental	2	1	•	-	28	28	-	•	22	78		Exam

Achieved abilities:

Theoretical knowledge, (What the students must know)

Knowledge of Statics

Knoledge of differential equations

Achieved skills: (What they can do)

Motion of a material system (particel, body, systems of bodies)

Application of principles of Analytical Mechanics (D'Alambert, Virtual work)

Method of virtual displacements

Achieved abilities: (What types of equipments and instruments they know how to use)

Application of analytical principles (energetical, virtual work) in Mechanics

Previous requirements (if necessary)

- Mechanics I

- Differential equations

A. (A. Course (course titles +curriculum)				
1	Principles of Dynamics; Velocity; Acceleration				
2	Scalar components of velocity and acceleration				
3	Kinematics of particle;				
	Kinematics of rigid body; Simple motion				
4	Rotation about fixed axis				
5	Plane motion				
6	Displacements diagram in plane motion				
7	Dynamics of free and constrained particle				
8	Impulse; Theorems of impulse				
9	Kinetic moment; Theorems of kinetic moments				
10	Kinetic energy; Theorems of kinetic energy				
11	Principle of D'Alembert; Kineto - static method				
12	Principle of virtual work				
13	Method of virtual displacements for systems in motion				
14	Method of virtual displacements for systems in equilibrium				

B1.	B1. Applications – WORKS (list of works, tutorial works, contents of the year end project)				
1	Velocity and acceleration				
2	Scalar components of velocity and acceleration				
3	Kinematics of particle				
	Kinematics of rigid body; Simple motions				
4	Rotation about fixed axis				
5	Plane motion				
6	Plane motion; Displacements diagrams				
7	Dynamics of free and constrained particle				
8	Impulse				

SUBJECT PRESENTATION FORM

9	Kinetic moment
10	Kinetic energy
11	Kineto – static method
12	Method of virtual work – systems in motion
13	Method of virtual work – systems in equilibrium with 1 dof
14	Method of virtual work – systems in equilibrium with 0 dof

B2. Laboratory room (Room/surface, address) 108/58m ² , str. Daicoviciu nr.15, clăd.V/turn, et.1; 504/58m ²					
Equipment	Equipment description	Year of			
		purchase			
Computers : Room 108: 14 pcs.	PC- Procesor Pentium IV/3GHz/Mem.1024MB/ HDD 200GB/DVD-RW/Monitor TFT 19"/Tast.+Mouse;	2006			

C. Individual study (topics of the bibliographical studies, summarized materials, projects, applications etc.)							
1. Differen	Differential equations						
2. Initial c	2. Initial conditions in Dynamics						
3. Displace	ement diagram	ms in plane m	otion of a sy	stem of plates			
Structure of	Course	Solving	Training,	Time alloted	Bibliographical	Total number of classes for	
the	study	homeworks,	applications	for	supplementary	individual study	
Individual		labs,		examinations	study		
study project		projects			_		
No. of	7	5	5	2	3	22	
classes							

D. Teaching methods and strategies

Classical method and internet

Interactive lectures

The applications and homework aim at building up engineering thinking.

Weekly group and individual office hours

Bibliography

1. lecture notes

- In UTC-N library
- 2. G. M. Barsan, P. Alexa, I. Bors Mecanica. Cinematica si Dinamica
- 3. Maclean and Nelson Engineering Mechanics, Statics and Dynamics, Shaum's series in Engineering
- Multimedia teaching aids
- 4.
- In other libraries
- 5. -

Examination and grading procedure

Examination procedure	Exam: written paper (1 hour – theoretical part; 2 hours - applications)			
	Home work -20% of the total / final mark.			
Components of the grade	Theory (nota T); Application (nota A); Tutorial (nota L)			
Formula for calculating	N=0,4T+0,4A+0,2L;			
the grade	Credits: T≥4,5 și A≥4,5 și L≥4,5			

Subject coordinator, Prof.dr.ing. Pavel ALEXA