SUBJECT PRESENTATION FORM

Subject name	Structural Dynamics
Field of study	Civil Engineering
Main field of study	CCIA
Subject code	41323208
Subject main teacher	Prof.dr.ing. Pavel ALEXA – pavel.alexa@staff.utcluj.ro
Colaborators	Ovidiu PRODAN
Department	Structural Mechanics
Faculty	Civil Engineering

Sem.	Type of subject	Course Applicati		ons	Course	App	Applications		Individual Study	AL	dits	Type of examination	
		[classes/week]			[classes/semester.]				er.]	LO	Cre		
		С	S	L	Р	С	S	L	Р		L	•	
2	Fundamental	2	1	•	I	28	28	-	-	22	78		Exam

Achieved abilities:
Theoretical knowledge, (What the students must know)
Knowledge of Structural analysis
Knoledge of differential equations
Achieved skills: (What they can do)
Modal analysis of skeletal structures
Dynamic analysis of skeletal structures

Achieved abilities: (What types of equipments and instruments they know how to use) Application of modal and dynamic analysis to frame type structures

Previous requirements (if necessary) Structural analysis Differential equations

A. C	A. Course (course titles +curriculum)				
1;	Dynamic actions				
2	Elastic properties of frame type structures				
	About damping (viscous); About d.o.f.				
3;	Free vibrations of one d.o.f. structures				
4					
5	Dynamic response of one d.o.f. structures to general dynamic forces				
6	Dynamic response of one d.o.f. to sinusoidal forces				
7	Damping in free and forced vibrations of one d.o.f. structures				
8	Lateral stifness matrix of frame type structures				
9	Differential equation of free and forced vibrations of multi d.o.f. structures				
10	Modal analysis (free vibrations) of multi d.o.f. frames – direct method				
11	Modal analysis (free vibrations) of multi d.o.f. frames – matrix itteration				
12;	Dynamic response of multi d.o.f. frames				
13					
14	Seismic response of mulit d.o.f. frames				

B1.	B1. Applications – WORKS (list of works, tutorial works, contents of the year end project)				
1	Elastic properties of one d.o.f. structures: stiffness coefficent; flexibility coefficient				
2	Stiffness matrix of the laboratory study case (two story steel frame)				
3	Lateral stiffness matrix of the labotory study case				
4	Inertia and damping matrices of the laboratory study case				
5	Free vibrations of the laboratory study case – direct method				
6	Free vibrations of the laboratory study case – matrix itteration				
7	Dynamic response of laboratory study case				

SUBJECT PRESENTATION FORM

B2. Laboratory room (Room/surface, address) 108/58m ² , str. Daicoviciu nr.15, clăd.V/turn, et.1; 504/58m ²					
Equipment	Equipment description	Year of			
		purchase			
Computers : Room 108: 14 pcs.	PC- Procesor Pentium IV/3GHz/Mem.1024MB/ HDD 200GB/DVD-RW/Monitor TFT 19"/Tast.+Mouse;	2006			

C. Individual study (topics of the bibliographical studies, summarized materials, projects, applications etc.)								
1. Differen	1. Differential equations							
2. Displac	ement metho	d in structural	analysis					
Structure of	Course	Solving	Training,	Time alloted	Bibliographical	Total number of classes for		
the	study	homeworks,	applications	for	supplementary	individual study		
Individual		labs,		examinations	study			
study		projects						
No. of	7	5	5	2	3	22		
classes								

D. Teaching methods and strategies

Classical method and internet

Interactive lectures

The applications and laboratorywork aiming at building up engineering thinking in Dynamics.

Weekly group and individual office hours

Bibliography

1. Lecture notes

In UTC-N library

- 2. G. M. Barsan : Dinamica si Stabilitatea Constructiilor
- 3. Anil K. Chopra: Dynamics of Structures: Theory and Applications to Earthquake Engineering

Multimedia teaching aids

4. Internet – Java animations of structural vibrations

In other libraries

5. -

Examination and grading procedure					
Examination procedure	Exam: written paper (1 hour – theoretical part; 2 hours - applications)				
	Laboratory work -40% of the total / final mark.				
Components of the grade	Theory (nota T); Application (nota A); Tutorial (nota L)				
Formula for calculating	N=0,3T+0,3A+0,4L;				
the grade	Credits: T≥4,5 și A≥4,5 și L≥4,5				

Subject coordinator, Prof.dr.ing. Pavel ALEXA