SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil engineering
1.3	Department	Railway, Roads and Bridges
1.4	Field of study	Civil engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	IIT/Engineer
1.7	Form of education	Full time
1.8	Subject code	16.00

2. Data about the subject

2.1	Subject name			STEEL-CONCRETE COMPOSITE BRIDGES				
2.2	Course responsible/lecturer			Assistant Professor PhD	Ştefan I.	Guțiu – stefan.gutiu@cfc	lp.utcluj.ro	
2.3	Teachers in charge of seminars			rs	Assistant Professor PHD	Ştefan I.	Guţiu – stefan.gutiu@cfo	dp.utcluj.ro
2.4	ear of study	2	2.5 Sem	1	2.6 Assessment	Exam	2.7 Subject category	DA DI

3. Estimated total time

3.1 Nu	umber of hours per week	3	3.2 of w	hich, course:	2	3.3 applications:	1
3.4 To	otal hours in the curriculum	42	3.5 of w	hich, course:	28	3.6 applications:	14
Individual study							hours
Man	ual, lecture material and notes,	bibliogr	aphy				28
Supplementary study in the library, online and in the field						28	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						20	
Tutoring							
Exams and tests						7	
Other activities							
3.7 Total hours of individual study 83							

3.7	Total hours of individual study	83
3.8	Total hours per semester	125
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	N/A

5. Requirements (where appropriate)

5.1	For the course	Large capacity room. Support materials: laptop, video-projector, projection screen, blackboard/whiteboard
5.2	For the applications	Seminar room, computers, blackboard/whiteboard

6. Specific competences

	A survivor prostical skills as second with all stars at a long which a survey site building.
	Acquire practical skills necessary to design steel-concrete composite bridges.
10	Recognizing typical structures and structural elements, specific to the graduated study
lar ces	programme.
Professional competences	Design of structural elements in bridge engineering, specific to graduated study programme.
eto	
ofe np	Advanced design of steel-composite bridges.
Pre	Research and development activities in the domain of bridge engineering structures.
0	At the end of the course the student will be able to realize a full structural analysis and design
	of a steel-concrete composite bridges.
	Documentation in Romanian and foreign language, in view of professional and personal
ses	development, via continuous learning and efficient adaptation to the new technical
s	specifications. Elaboration and presentation of a technical report concerning the composite
Cross competences	bridges.
b C	To apply accumulated skills in order to improve the performance in team working, on site or in
u	
J	a design office;
	To develop own and responsible strategy following the principles, codes and professional ethics.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Development of competences regarding the formulation and compliance of safety requirements for composite steel-concrete bridges. The course aims to develop the theoretical and practical skills necessary to design steel-concrete composite bridges using EUROCODES
7.2	Specific objectives	The course focuses on the calculation and design of composite elements made of steel profiles attached to concrete elements – composite beams used for simply supported or continuous bridges. At the end of the course, the student must be able to imagine and design such composite steel-concrete bridges

8. Contents

8.1. l	ecture (syllabus)	Teaching methods	Notes
1	Types of steel-concrete composite bridges		
2	Design codes. Eurocodes. National annexes		
3	Loads and actions. Traffic loads on road bridges. Actions during construction. Temperature. Wind. Earthquake.		e,
4	Basis of design. Modeling and methods for global analysis		war
5	Structural materials. Concrete. Structural steel. Stud shear connectors	ssions	design software, eboard
6	Classification of cross sections	scus	desi eboa
7	Resistance to bending of composite cross sections. M ⁺	d di	
8	Resistance to bending of composite cross sections. M ⁻	n an	tern rd/w
9	Resistance to shear. Interaction of bending with shear for composite cross sections	Presentation and discussions	jector, internet, design blackboard/whiteboard
10	Steel-Concrete Connection	ese	ojec bla
11	Structural bearings, dampers, and expansion joints. Fabrication and erection of the steel-concrete structure	ā	Video projector, internet, blackboard/whit
12	Computer aided design. Optimization of steel-concrete composite bridges		Vi
13	CAD. Optimization of steel-concrete composite bridges		
14	CAD. Sustainability		

Bibliography

1. GUŢIU, Şt. : Poduri. Structuri compuse oţel – beton. UTPRESS 2012

2. GUŢIU, Şt., MOGA, C.: Structuri compuse oţel - beton. UTPRESS 2014

3. MOGA, P., GUŢIU, Şt., MOGA, C,: Construcții și poduri metalice. Bazele proiectării. UTPRESS 2018

4. VAYAS, I., ILIOPOULOS, A.: Design of Steel-Concrete Composite Bridges to Eurocodes, CRC Press

5. LEBET, Jean Paul, HIRT, Manfred: Steel Bridges. Conceptual and structural design, CRC Press, 2013 6. SR EN 1990, SR EN 1991, SR EN 1993

7. https://sections.arcelormittal.com/design_aid/design_software/EN: ACOBRI, AMECO

8.2. /	Applications/Seminars	Teaching methods	Notes		
1	Presentation of the structure to be designed. Road/ railway/highway composite bridge	ice	vare, rd		
2	Effective width of concrete flanges. Modular ratios. Elastic and plastic properties of cross-sections	l practice	softv tor, teboa		
3	Calculation of stresses under positive bending moments	and	ssign ojec 'whit		
4	Calculation of stresses under negative bending moments	tion	s, de o pr ard/		
5	Design of connections. Studs	Presentation	uters vide ckbo		
6	Optimization of steel-concrete composite bridges.	rese	Compute vid blackbo		
7	Optimization of steel-concrete composite bridges. Sustainability.		C		
	Bibliography				
1. GUŢIU, Şt. : Poduri. Structuri compuse oţel – beton. UTPRESS 2012					

2. GUŢIU, Şt., MOGA, C.: Structuri compuse oţel – beton. UTPRESS 2014

3. MOGA, P., GUŢIU, Şt., MOGA, C,: Construcții și poduri metalice. Bazele proiectării. UTPRESS 2018

4. MOGA, P., GUŢIU, Şt.: Poduri metalice. Ghid de proiectare. UTPRESS 2016

5. SR EN 1990, SR EN 1991, SR EN 1993

6. https://sections.arcelormittal.com/design_aid/design_software/EN: ACOBRI, AMECO

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Accumulated skills will be necessary for those employees who will be involved in private or public institutions activities dealing with construction works, project management or quality assurance for residential or industrial constructions.

The content was updated to keep in touch with the requirements of the work market.

The employers appreciate positively the level of knowledge of master programme graduates.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Ability to talk about subjects presented during lectures	Written test. The evaluation consists in the knowledge verification (Problem solving and theory - 1,5 hour evaluation)	60% (T)			
10.5 Applications	Ability to analyze a real structure by computer aid	Analysis of written and drawn parts. Project presentation (10 min/student)	40% (P)			
10.6 Minimum standard of performance						
P≥5 and T≥5; N = 0.5·T + 0.5·P ≥5.00						

Date of filling in:		Title Surname Name	Signature
15.10.2019	Lecturer	Assistant Professor PhD Ştefan I. Guţiu	
	Teachers in charge of	Assistant Professor PhD Ştefan I. Guţiu	
	application		

Date of approval in the department

Head of department Conf.dr.ing. Gavril Hoda

Date of approval in the faculty

October 2019

October 2019

Dean Conf.dr.ing. Nicolae Chira