

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Civil Engineering and Management
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Civil Engineering/ Engineer
1.7	Form of education	Full time
1.8	Subject code	5.00

2. Data about the subject

2.1	Subject name			Applied Chemistry				
2.2	Subject area			Civil Engineering				
2.3	Course responsible/lecturer				Associate Professor Ph.D. Eng. Claudiu ACIU claudiu.aciu@ccm.utcluj.ro			
2.4	Teachers in ch	Teachers in charge of seminars			Associate Profess claudiu.aciu@ccr		Eng. Claudiu ACIU <u>o</u>	
2.5	Year of study	Ι	2.6 Semester	1	2.7 Assessment	Exam	2.8 Subject category	DF/DI

3. Estimated total time

3.1 N	umber of hours per week	4	3.2 of wl	nich, course:	2	3.3 applications:	2
3.4 To	otal hours in the curriculum	56	3.5 of wl	nich, course:	28	3.6 applications:	28
Individual study					hours		
Man	ual, lecture material and notes,	bibliogra	aphy				35
Supplementary study in the library, online and in the field					-		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					20		
Tutoring					10		
Exams and tests					4		
Other activities					-		
3.7	Total hours of individual study	у	69				•
3.8	Total hours per semester		125				

3.8	Total hours per semester	125
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Physics; Chemistry

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

	-	r	•
		A	fter completing the discipline, students must have theoretical knowledge about:
		-	characteristics of building materials, physical properties;
		-	behaviour of the material under the action of water, temperature and loads;
		-	states of substances;
		-	substances systems; interface phenomena;
		-	water in construction;
		-	natural stone in construction. Building materials made of natural stone;
		-	aggregate for mortar and concrete;
_	S	-	non hydraulic inorganic mineral binders, hydraulic.
Professional	nce	A	fter completing the discipline, students will be able to:
ssie	competences	-	identify the physical features of the porous, compact materials (mass, volume, density, voids
rofe	Jmc		volume, compactness and porosity);
Р	c	-	establish the physical features of materials under the action of water (humidity and water
			absorption);
		-	perform determinations regarding the quality of water;
		-	determine the specific surface using Blaine permeameter;
		-	use non-destructive methods (surface mechanic methods and acoustic methods) in order to
			establish the mechanic characteristics;
		-	determine mechanical strengths of building materials (tensile, flexural and compressive
			strength);
		-	determine the properties of the aggregates (sand, gravel).
		1.	Application of effective and responsible work strategies, punctuality, responsibility and
	ces		personal liability based on principles, norms and values of professional ethics.
SSC	competences	2.	Applying the techniques of effective team work on different hierarchical levels.
Cross	npe	3.	Documentation in Romanian and in a foreign language, for professional and personal
	con		development through continuous training and effective adaptation to new technical
			specifications.

7. Discipline objectives (as results from the *key competences gained*)

7 1	General objective	Developing expertise in control and quality assurance in support
/.1		of training.
		Assimilating theoretical knowledge concerning the
7.2	Specific objectives	characteristics of the main building materials and methods for
		their determination.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes	
1.	Introduction, history, objectives of the course.			
2.	Characteristics of construction materials, physical properties: mass, weight, volume, density, specific weight,	Power Point presentation		
	compactness, porosity, voids, volume.		Video – projector	
3.	Materials behaviour under the action of water: humidity, water absorption, permeability, freeze-thaw resistance.			
4.	Materials behaviour under the action of heat, heat conductivity and dilatation.			
5.	Materials behaviour under the action of loads: loads,			

	mechanical properties, efforts and deformations.		
6.	Materials behaviour under the action of static loads and		
0.	dynamic loads, hardness, wear resistance and fatigue.		
	Non-destructive tests of materials: surface mechanical		
7.	methods, acoustic tests, atomic, electric and combined		
	tests.		
8.	State of aggregation: gas, liquid, solid (system of		
0.	crystallization amorphous, solids and glass).		
9.	Interface phenomena.		
	Substance systems: molecule dispersions, colloidal		
10.	dispersions, coarse-grained dispersions. Water (structure		
	and properties). Water in constructions.		
11.	Stone in construction, stone materials in construction.		
12.	Aggregates for mortar and concrete (sand).		
13.	Aggregates for mortar and concrete (gravel).		
14.	Mineral binders: non-hydraulic and hydraulic binders.		
Biblio	ography	L	
Danie	ela Lucia MANEA, Claudiu ACIU (2015). Materiale de Con	istrucții și Chimie A	plicată. Buildin
Mate	rials and Applied Chemistry. Ed. U.T. PRESS, Cluj-Napoca. IS	BN 978-606-737-13	39–0.
Floric	ca PAUL (2008). Civil Engineering Materials - Second Edition	on. Ed. Matrix Rom,	Bucuresti. ISB
973–9	973–755–315–7.		
8.2. A	Applications	Teaching methods	Notes
1.	Work protection and safety technique regulation.		
2.	Units of measurement.		
3.	Determining the physical-mechanical characteristics: mass,		
5.	weight, volume.		
4.	Calculation of the density; apparent density, bulk density,		
4.	compactness and porosity.		
5.	Determination of voids volume, humidity, water absorption.		
~	Determination of the specific surface using the Blaine	Laboratory work	
6.	permeameter.	presentation and	Laboratory
7.	Solutions and concentrations.	applications	works
8.	Determination of the quality of water.		
9.	Non-destructive tests using mechanical surface methods.		
10.	Non-destructive tests using ultrasonic methods.		
11.	Mechanical tests, practical examples.		
12.	Tests and determinations on sand.		
13.	Tests and determinations on gravel.		
14.	Final evaluation.		
	ography		
	liu ACIU, Daniela Lucia MANEA, Alexandru Gheorghe NE	TEA (2013) Buildin	no Materials ar
	ed Chemistry – Second Edition. Ed. U.T. PRESS, Cluj-Napoca		•
1 ADDI	ica chemisu y second Edition. Ed. 0.1. 1 KESS, Ciuj-Napuca	. 1501 770-775-002	- 075-1.

Livia Ingrid DIACONU (2013). Chemistry for Civil Engineers. Ed. Societatii Academice "MATEI-TEIU BOTEZ", Iasi. ISBN 978–606–582–045–6.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be necessary to the employees who work in the quality control of building materials, civil engineers as well as to the teachers in secondary education.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the			
Activity type	10.1 Assessment cinena	10.2 Assessment methods	final grade			
Course	Multiple choice test (40 questions)	Written test (40 minutes)	60%			
Applications	Solving 6 problems	Written test (40 minutes)	20%			
Laboratory works	Test of laboratory works – 5 questions	Test after each laboratory work	20%			
10.4 Minimun	10.4 Minimum standard of performance					
Mark components: Laboratory (mark L); Problems (mark P); Multiple choice test (mark G).						
Mark computa	Mark computation formula: $N = 0.2L + 0.2P + 0.6G$; is calculated only if: $L \ge 5$, $P \ge 5$ and $G \ge 5$.					

Date of filling in 29.09.2017

Teachers in charge of seminars Associate Prof. Ph.D. Eng. Claudiu ACIU

Date of approval in the department 29.09.2017

Head of department Associate Prof. Ph.D. Eng. Claudiu ACIU