

SYLLABUS

Data about the program of study 1.

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Civil Constructions and Management
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	CCIA English/Engineer
1.7	Form of education	Full time
1.8	Subject code	59.20

Data about the subject 2.

2.1	Subject name			Agricultural Structures			
2.2	2 Subject area			Civil Engineering			
2.3	Course responsible/lecturer			Ruxandra DÂRMON			
2.4	2.4 Teachers in charge of seminars			Ruxandra DÂRM	ON		
2.5 Year of studyIV2.6 Semester2			2.7 Assessment	Exam	2.8 Subject category	DID/DOP	

3. Estimated total time

3.1 N	umber of hours per week	3	3.2 of w	hich, course:	2	3.3 applications:	1
3.4 To	otal hours in the curriculum	42	3.5 of w	hich, course:	28	3.6 applications:	14
Individual study						hours	
Manu	ual, lecture material and notes, l	oibliogra	phy				14
Supp	elementary study in the library,	online ar	nd in the f	field			14
Preparation for seminars/laboratory works, homework, reports, portfolios, essays				28			
Tutoring					2		
Exams and tests					4		
Other activities						-	
3.7 Total hours of individual study 62					<u> </u>		
3.8Total hours per semester104							
3.9 Number of credit points 4							

4. Pre-requisites (where appropriate)

4.1	Curriculum	Reinforced and Prestressed Concrete, Steel Constructions
4.2	Competence	-

Requirements (where appropriate) 5.

5.1	For the course	Not applicable
5.2	For the applications	Not applicable

OF CLUJ-NAPOCA, ROMANIA

6. Specific competences

		Theoretical knowledge:
		To know the normal performance for designing general plans of farm buildings;
		To know the performance criteria for the design of agricultural buildings;
		To meet performance requirements standardized construction of livestock;
		To meet the performance requirements of standardized production plant construction;
		To know the types of structural systems of livestock buildings;
		To know the types of structural building systems for vegetable production;
		To know the specific performance requirements of the enclosure of livestock buildings;
nal	lces	
Professional	competences	After completing the subject, students will be able to:
ofe	npe	- produce floor plans and cross sections correlated with technologies of livestock buildings and
\Pr	c01	maintenance of bio factors;
		- determine the type of structure functions properly with the livestock building functionality and
		technology;
		- design closure elements correlated with the protection structure and the microclimate;
		- be calculated in terms of heat engineering closure elements of the building livestock;
		- able to calculate the energy balance of the building livestock;
		- prepare a greenhouse design;
		- decide on measures of corrosion protection of construction elements.
	s	Presentation of a technical report incorporating the specifically bio-tech elements for agricultural
	lce	buildings, structural elements and description of the resistance structure. Supporting an oral
Cross	eter	presentation of the designed construction.
Ū	competences	presentation of the designed construction.
	C01	

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	Developing abilities to identify, formulate and solve structural
		engineering problems
7.2	Specific objectives	Developing abilities to design or check structural and specifically
1.2		members to fulfil strength, stiffness and stability requirements

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1.	Elements of design theory of agricultural construction: classification, performance criteria, performance targets and specific environmental factors		
2.	The design of general plan of livestock farms correlated with environmental requirements	Lecture with	
3.	Constructions for zootechnical field: performance criteria, indoor and outdoor environmental factors, technologically and specifically functional elements	discussions	
4.	Technological and functional elements for housing cattle and swine species		

5.	Technological and functional elements for housing			
5.	poultry and equine species			
	Structural design of housing constructions:			
6.	construction systems, schemes and static load			
0.	calculation features, dimensioning the elements of			
	resistance structure			
7.	Structural systems with load-bearing walls			
8.	Structural framing systems with openings 9-15m			
9.	Structural framing systems span 15- 24m			
10	Hygrothermal design of agricultural buildings: indoor			
10.	comfort parameters, specific design problems			
11.	The energetically design of the farms buildings.			
11.	Constructive details of envelope elements.			
	Aggressive environments. Corrosion protection.			
12.	Basics elements to refurbish the agricultural building			
12.	envelope.			
		_		
13.	Functional elements, environmental factors and			
	resistance structures for greenhouses.	-		
	Functional elements, environmental factors and			
14.	resistance structures for grains storage and fruit			
	warehouse.			
Biblio	ography			
	I, E., Ioani, A., Popa, A., Nedelcu, M., Strength of Materials. 7	Theory and Problems,	, Part II, Edit.	
-	ca Star, 2009.		11	
	I, E., Ioani, A., Turda., D., Popa A., Lessons of Strength of Ma	terials. Theory and P	roblems, Part II,	
•	Napoca, 2004. J.M, Goodno, B.J., <i>Mechanics of Materials</i> , Eighth edition, Ed	lit CENGAGE Lear	ning 2012	
	eler, R.C., <i>Mechanics of materials</i> , Eighth edition, Pearson Pres		iiiig, 2012.	
	F. P., Johnston Jr., E.R., DeWolf, J.T., Mazurek, D.F., Mechan		th edition	
	raw-Hill, 2012.	iics of materials, SIX	ui cuition,	
	on, T.G.H., Structural and stress analysis, Second Edition, Els	evier Butterworth-He	einemann, 2005.	
•	lva, V. D., Mechanics and strength of materials, Springer-Verla		,,	
Bores	si, A.P., Schmidt, R.J., Sidebottom, O.M., Advanced mechanics	<i>of materials</i> , Fifth E	dition, John	
	y & Sons, Inc., 1993.			
8.2. A	Applications/Seminars	Teaching methods	Notes	
1.	Study location of farming - livestock and vegetables			
2.	Designing the floor plan and cross-section for a			
2.	building within a Farm			
	The study of structural resistance system for a			
3.	livestock building - structural computation and	Problems solving		
	dimensioning of resistence elements	-		
4.	The energetically design of the building and envelope	with discussions		
4.	elements.			
5.	Study location of farming - livestock and vegetables			
	Designing the floor plan and cross-section for a			
6.	building within a forming livestock or vegetables			

building within a farming - livestock or vegetables

7.	The energetically design of the building and envelope elements.						
Bibli	ography						
	Gere, J.M, Goodno, B.J., <i>Mechanics of Materials</i> , Eighth edition, Edit. CENGAGE Learning, 2012. Pantel, E., Ioani, A., Popa, A., Nedelcu, M., <i>Strength of Materials. Theory and Problems, Part II</i> , Edit.						
-	ca Star, 2009.						
	el, E., Ioani, A., Turda., D., Popa A., Lessons of Strength of Ma Napoca, 2004.	terials. Theory and Pi	roblems, Part II,				
Hibb	Hibbeler, R.C., Mechanics of materials, Eighth edition, Pearson Prentice Hall, 2011.						
-	F. P., Johnston Jr., E.R., DeWolf, J.T., Mazurek, D.F., <i>Mechar</i> raw-Hill, 2012.	<i>vics of materials</i> , Sixt	h edition,				
Ye, J	., Structural and stress analysis. Theories, tutorials and exampl	es, Taylor & Francis,	, 2008.				
Harts	uijker, C., Welleman, J.W., Engineering mechanics. Volume 2:	Stresses, Strains, Dis	splacements,				
Sprin	ger, 2007.						

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be needed for civil engineers who work in design and buildings firms, and are fundamental for those who will follow master and doctoral programmes in the field of Civil Engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
Course	5 theory subjects	Written examination	75%			
Applications	Project defence	Oral presentation	25%			
10.4 Minimum standard of performance						
The minimum	The minimum grade required to pass the written examination is 5 (five).					
The minimum	The minimum grade for the project defence is 5 (five).					
The attendance of the application classes is mandatory under the provisions of ECTS Regulation.						

Date:

Course Tenure

Course Instructor

september 2017

Lecturer , Dr Eng_MSc Ruxandra DÂRMON Lecturer, Dr Eng_MSc Ruxandra DÂRMON

Date of approval within department

.....

Department Manager Senior Lecturer, Assoc. Prof.*Dr Eng*_Claudiu ACIU