SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Structural Mechanics
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Civil Engineering (english) / Civil Engineer
1.7	Form of education	Full time
1.8	Subject code	26.00

Data about the subject 2.

2.1	Subject name			Statics I				
2.2	Subject area			Civil Engineering	5			
2.3	Course responsible/lecturer			Assoc.prof. FZs	ongor G	OBESZ		
2.4	Teachers in charge of seminars			Assoc.prof. FZs	ongor G	OBESZ		
2.5 Y	Year of study	II	2.6 Semester	2	2.7 Assessment	Exam	2.8 Subject category	DID DOB

Estimated total time 3.

3.1 N	umber of hours per week	6	3.2 of w	nich, course:	3	3.3 applications:	3
3.4 To	otal hours in the curriculum	84	3.5 of w	nich, course:	42	3.6 applications:	42
Individual study							
Manual, lecture material and notes, bibliography							33
Supp	lementary study in the library, o	online an	d in the fi	eld			_
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						33	
Tutoring						_	
Exams and tests						6	
Other activities						_	
3.7Total hours of individual study72							
3.8Total hours per semester156							
3.9 Number of credit points 6							

4. Pre-requisites (where appropriate)

4.1	Curriculum	Mechanics I
4.2	Competence	none

5. Requirements (where appropriate)

5.1	For the course	Amphiteater with blackboard, videoprojector and screen
5.2	For the applications	Classroom with blackboard, pocket calculators

6. Specific competences

-			
		After c	completing the syllabus, the students will be able to:
		-	schematize materials, actions, supports, structures for structural analysis;
		-	apply the static equilibrium conditions for all categories of static determined
nal	seou		structures;
essic	betei	-	draw the effort diagrams for all categories of static determined structures;
rofe	comp	-	use the principle of virtual mechanical work in order to determine forces and
д			influence lines for all categories of static determined structures;
		-	assess maximum efforts from mobile loads on a simple supported beam;
		-	analyse plane structures with perpendicular loads.
	S	Knowl	edge and experience of employing efficient and responsible work strategies, punctuality,
s	ence	serious	sness and liability based on the principles, norms and values of professional ethics.
ros	pete	Applyi	ng efficient technics in team work.
	omj	Better	understanding of the laws of nature and of the relation between cause and effect.
	ပ		

7. Discipline objectives (as results from the *key competences gained*)

7.1	1 General objective	Understanding and learning the basic concepts regarding the			
	General objective	structural analysis of the main categories of bearing structures. Assimilation of theoretical and practical knowledge about the use of static calculation in the structural analysis of static determined			
7.2		Assimilation of theoretical and practical knowledge about the use			
	Specific objectives	of static calculation in the structural analysis of static determined			
		structures.			

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1.	Objectives of structural analysis. Schematics for structural materials, actions, bearing structures.		
2.	Main hypothesis of linear elastic structural analysis. Differential relations between loads and efforts. Drawing effort diagrams.		
3.	Straight beams. Cantilivered girders with hinges (Gerber beams).		
4.	Plane frame structures. The use of symmetry and anti- symmetry by plane frames.		
5.	Arches. Plane three-hinged arches. Arches with ties.	Oral and written	Ta diasi da ol ota da
6.	Plane trussess, solving methods.	presentation with	topics will be
7.	Matrix formulation in case of plane trussess.		oppies will be
8.	The use of virtual mechanical work for assessing reactions and efforts in case of plane structures.	(stimulating	week before
9.	Influence lines (definition, methods). Influence lines in case of simple supported beams and Gerber beams.	interactivity)	
10.	Influence lines in case of plane arches and plane frames.		
11.	Influence lines in case of common and complex trussess.		
12.	Maximum efforts resulting from mobile loads applied on simple supported beams.		
13.	Highest maximum bending moment and critical		

	section, resulting from mobile loads on a simple			
14.	Plane structures loaded perpendicular to their plane.			
8.2. A	Applications/Seminars	Teaching methods	Notes	
1.	Applying static equilibrium conditions. Computing of the reactions.			
2.	Straight beam. Effort diagrams.	Short presentation		
3.	Girders with cantilevers and hinges. Effort diagrams.	followed by		
4.	Plane frames with static loads. Effort diagrams.	avemplary		
5.	Use of structural symmetry and anti-symmetry by plane frames.	applications with		
6.	Solving plane arches. Sectional forces, effort diagrams.	discussions.	Students can	
7.	Static calculus of simple plane trusses.	Each student has	work	
8.	Static calculus of complex plane trusses.	to solve the given	individually or	
9.	Using the principle of virtual mechanical work in order to determine sectional efforts.	which will be	in groups.	
10.	Influence lines by Gerber girders and plane frames.	checked and		
11.	Influence lines by arches.	assessed weekly		
12.	Influence lines by plane trusses.	by the teacher.		
13.	Assessing M(max) and T(max) by a simple supported beam.			
14.	Assessing M(max,max) by a simple supported beam.			
Biblio	ography			
1. Lecture notes.				
2	. Catarig A. et alii: Statica constructiilor. Teorie si aplicatii – S Ed. UTPres, Cluj-Napoca, 2003.	Structuri static deterr	ninate, vol. 1,	

- 3. Catarig A., Petrina M.: Statica constructiilor Metode de calcul si aplicatii, Ed. Dacia, Cluj-Napoca, 1991.
- 4. Mazilu P.: Statica Constructiilot, vol.1 & 2, Ed. Tehnica, Bucuresti, 1955, 1959.
- 5. Kassimali A.: Structural Analysis, PWS-Kent Publishing Co., Boston, 1993.
- 6. West H. H.: Fundamental of Structural Analysis, John Wiley & Sons, NY, 1993.
- 7. White R. N., Gergely P, Sexsmith R. G.: Structural Engineering, vol. 1 & 2, John Wiley & Sons, NY, 1975.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be needed by engineers working in building design and/or research (also in education).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
Course	Theory (2 subjects)	Written examinarion (30 minutes)	40%
Applications	Activity during the semester (portfolio with solved problems) +	Assessment of the home-works	20%
	Solving 4 problems	Written examinarion (2.5 hours)	40%

10.4 Minimum standard of performance

Solving the home-works and handing over them before the weekly deadlines is mandatory in order to participate at the examination (see also ECTS rules).

The final grade (F) is computed only if each component (T – theory, A – activity, P – problem solving) has an individual average value of 4.5 (four and 50%) at least, using the following formula: F = 40%T + 20%A + 40%P.

The condition of promotion (acquiring the credit points): $F \ge 5$.

Date of filling in 18.07.2017

Teachers in charge of seminars Assoc.Prof. F.-Zsongor GOBESZ

Date of approval in the department

Head of department Prof. Cosmin G. CHIOREAN