SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Structural Mechanics
1.4	Field of study	Structural Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Civil Engineering/ Civil Engineer
1.7	Form of education	Full time
1.8	Subject code	54.00

2. Data about the subject

2.1	Subject name			Computer Assisted Design				
2.2	Course responsible/lecturer			Lecturer PhD Civ. Eng. Petrina Tudor				
2.3	Teachers in charge of seminars				Lecturer PhD Civ	. Eng. Pe	etrina Tudor	
2.4	Year of study	IV	2.5 Semester	I	2.6 Assessment	С	2.7 Subject category	DOB

3. Estimated total time

3.1 Number of hours per week	4	3.2 of which, course:	1	3.3 applications:	2
3.4 Total hours in the curriculum	114	3.5 of which, course:	14	3.6 applications:	28
Individual study					
Manual, lecture material and notes, bibliography					8
Supplementary study in the library, online and in the field					8
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					7
Tutoring					7
Exams and tests					6
Other activities					

3.7	Total hours of individual study	36
3.8	Total hours per semester	78
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	N/A
4.2	Competence	N/A

5. Requirements (where appropriate)

5.1	For the course	projector
5.2	For the applications	1 computer for each student

6. Specific competences

		At the end of the course the student will be able to realize a full structural analysis of a steel,					
nal	ses	reinforced concrete or mixed steel- reinforced concrete real structure. The competence of the					
sior	tenc	student will be on most types of structures: 2 dimensional structures (frames, trusses), 3-					
reinforced concrete or mixed steel- reinforced concrete real structure. The competence student will be on most types of structures: 2 dimensional structures (frames, trusses), dimensional structures (3D buildings, 3D trusses), panels, silos, retaining walls a.s.o will be able to get the data needed to design each element of the structure (stresses, int							
Pro	con	will be able to get the data needed to design each element of the structure (stresses, internal					
		forces, displacements).					
	S	- computer use;					
S	nce	- a set of software;					
Cross	competences	- Romanian and European design codes prescriptions for structural design;					
	luic	- Analysis of structures by matrix formulation					
	S						

7. Discipline objectives (as results from the key competences gained)

		The main goal of this discipline is to assure the student to be able			
7.1	General objective	to realise a complete structural analysis of a steel, reinforced			
		concrete or mixed structure by using computer tools.			
		- knowledge of the software to use;			
	Specific objectives	- modelling of the material, structure and supports;			
		- modelling the actions and loads;			
7.2		- introduce combinations by design code;			
		- find internal forces diagrams on all elements;			
		- find moment maps on panels, diaphragms;			
		- find displacements and deformations			

8. Contents

8.1. L	Lecture (syllabus)	Teaching methods	Notes		
1.	The discipline main characteristics, goals and expectations				
2.	-				
3.	Modelling the material, structures, supports and loads.				
3.	European materials and products databases presentation.				
4.	-				
5.	European Design Codes prescriptions guidance.	D D			
6.	-	Power Point			
7.	Wind action and Seismic action computer modelling.	presentation, 2			
8.	-	way discussions, solved examples.			
9.	Matrix Analysis of structures – Basic Elements.	solved examples.			
10.					
11.	Matrix Analysis of structures – Force Method.				
12.					
13.	Matrix Analysis of structures – Displacement Method.				
14.					
D:1-1:	Diklig grandery Autodock Dobot Structural Analysis Hear Cuide M. Detring et al "Metriy analysis of				

Bibliography: Autodesk Robot Structural Analysis User Guide, M. Petrina et al "Matrix analysis of structures", U.T. Press 2007, ISBN 978-973-662-351-6

8.2. A	Applications/Seminars	Teaching methods	Notes			
1.	Software general presentation (Autodesk Robot Structural					
	Analysis)					
2.	Material and cross sections European databases. European					
	design codes software implementation. Supports modelling.					
3.	Structural analysis of 2 dimensional steel frames.					
4.	Structural analysis of 2 dimensional reinforced concrete					
	frames.					
5.	Structural analysis of 2 dimensional steel trusses.					
6.	Structural analysis of 3 dimensional steel trusses.					
7.	Structural analysis of a plate and diaphragm.					
	Structural analysis of a real reinforced concrete structure					
8.	with 3d frames, panels and diaphragms. Part 1: Modelling	Direct description				
	the material, structure and supports.	of the work,				
	Structural analysis of a real reinforced concrete structure	solved example, individual and				
9.	with 3d frames, panels and diaphragms. Part 2: Actions and					
	loads on structure according design code prescriptions.	group				
	Structural analysis of a real reinforced concrete structure	explanations.				
10.	with 3d frames, panels and diaphragms. Part 3: Internal	1				
	forces diagrams, moment maps on panels and diaphragms,					
	displacements.					
11.	Structural analysis of a steel-reinforced concrete structure.					
	Part 1: Modelling the material, structure and supports.					
	Structural analysis of a steel-reinforced concrete structure.					
12.	Part 2: Actions and loads on structure according design code					
	prescriptions.					
	Structural analysis of a steel-reinforced concrete structure.					
13.	Part 3: Internal forces diagrams, moment maps on panels					
	and diaphragms, displacements.					
14.	Final Test					
	Bibliography					
Auto	Autodesk Robot Structural Analysis User Guide, SR EN 1990-1998					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The contents of the course and the objective of the discipline is to assure the Civil Engineer the possibility to work within structural engineer consultant companies in Romania and in the European Union. The employers in this field expect the junior civil engineer to be able to analyse a structure, design the structure and draw the execution details. This course assures the first mentioned ability.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
Course	Ability to talk about subjects presented during lectures	Interview	50%
Applications	Ability to analyse a real structure by computer aid	Computer test	50%

10.4 Minimum standard of performance

- In order to pass the interview the student has to prove good knowledge of lectures contents;
- In order to pass the computer test the student should realise at least the correct modelling of the structure and supports by computer aid.

Date of filling in:	Titular	Title / name	Semnătura
	Course	Sef Lucrari Tudor PETRINA	
	Aplications	Sef Lucrari Tudor PETRINA	

Date of aproval in Department Board	Head of Structural Mechanics Department Prof.dr.ing. Cosmin Chiorean
Date of aproval in Faculty Board	Dean Conf.dr.ing. Nicolae Chira