SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Mechanics of Constructions
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
16	Program of study/Qualification	Civil, Industrial and Agricultural Buildings (English
1.0		Language)/ Engineer
1.7	Form of education	Full time
1.8	Subject code	21.00

2. Data about the subject

2.1	Subject name			STRENGTH OF M	ATERIAL	51		
2.2	Subject area			Civil Engineering				
2.3	Course responsible/lecturer			Conf. dr. eng. Anca Gabriela Popa				
2.4	Teachers in charge of seminars				Lecturer dr. eng.	Horațiu I	Mociran	
2.5 Year of study 2 2.6 Semester 1		2.7 Assessment	Exam	2.8 Subject category	DD/DI			

3. Estimated total time

3.1 Nu	mber of hours per week	6	3.2 of w	hich, course:	3	3.3 applications:	3
3.4 To	tal hours in the curriculum	84	3.5 of w	hich, course:	42	3.6 applications:	42
Individual study					hours		
Manu	ual, lecture material and notes,	bibliogra	iphy				15
Supplementary study in the library, online and in the field						10	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						35	
Tutoring					6		
Exams and tests					-		
Other activities					-		
3.7	3.7 Total hours of individual study 66						

5.7	Total hours of individual study	00
3.8	Total hours per semester	105
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	Special Mathematics, Mechanics, Building Materials
4.2	Competence	In-depth knowledge of the disciplines mentioned above

5. Requirements (where appropriate)

5.1	For the course	Lecture room with blackboard and media devices (projector, laptop)
5.2	For the applications	Lecture room with blackboard, access to the laboratory room 14,
		preparation of the specimens for testing, personal scientic

	calculators, design standards/ application manual, access to
	computers room 306.

6. Specific competences

		C1.1 Identification of the structural role of the elements of a building;
		C1.3 Graphic representation and modelling of different types of building elements and
		structures;
lal	ces	C2.1 Identification of the main building materials, the main strength elements and types of
sior	ten	structures;
ofes	.ədu	C2.2 Description of actions and loads specific to the strength calculation;
Pro	con	C2.3 Use of calculation methods specific to the problems of design, verification and bearing load
		capacity for the main types of structural elements;
		C2.4 Evaluation, selection and optimal use of the main building materials, in relation to the
		requirements of resistance and rigidity of the elements and structures.
		CT1. Applying efficient and responsible work strategies, promoting the requirements regarding
	ces	punctuality, seriousness and personal responsibility in the engineering activity, respecting the
SSC	ten	principles and values of professional ethics;
S	npe	CT3. Awareness of the need for continous training and professional development by
	con	documenting the latest scientific, technical and technological developments in the field of civil
		engineering at national and international level.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Development of competences regarding the formulation, verification and compliance with the requirements of resistance, rigidity and stability, under economic conditions, of the elements and structures of resistance in the field of constructions.
7.2	Specific objectives	Acquiring theoretical and practical knowledge regarding the main methods and methods of calculation (design / checking / determining the capable load, the displacement state) of an element or a structure of resistance specific to civil, industrial or agricultural constructions.

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
1. Introduction. Fundamental elements in the study of the	Lecture,	Blackboard,
deformable body. Classification of the strength elements.	participative	projector,
Necessary schematization: loads and supports. Displacements and	discussions,	screen.

		 ,		
strains. Internal forces: stresses and internal actions.	projection of			
2. Fundamental principles in solving the problems of Strength of	relevant cases,			
Materials. Diagrams of the internal actions in the case of straight	formulation of			
bars. Differential relationships between the internal actions and	conclusions,			
loads.	establishing the			
3. Mechanical properties of the materials. Stretching test for the	limits of			
steel. Strain – stress diagram for ductile materials. Brittle	application of the			
materials. Behaviour of the materials subject to other actions.	demonstrated			
4. Basic assumptions in Strength of Materials. Methods of	results.			
calculation. Problems of Strength of Materials.				
5. Axial action: strains and stresses. Strength condition and				
particularization of the problems of Strength of Materials				
(verification / design / bearing capacity). Account for dead weight.				
6. Statically indeterminate structures subject to axial loads.				
7. Shear. The duality of the shear stresses. Riveted / bolted joints.				
Welded joints.				
8. Pure bending. Navier's formula.	-			
9. Simple bending: prismatic bars with symmetrical cross-section.				
Jurawsky's formula. Strength calculation of the beams.				
10. Bending of non-symmetrical cross-sections. The shear centre.				
Longitudinal shearing force.				
11. Bending deformations: strains and displacements. The				
differential equation of the deformed axis. Direct integration.				
Method of the conjugate beam.				
12. Free torsion of circular and ring-shaped bars. Rectangular				
cross-section. Thin-walled open and hollow sections.				
13. State of stresses in 3-D. Principal stresses and directions.				
Extreme shear stresses. State of strains in space. Generalization of				
Hooke's law.				
14. Plane state of stresses. Particularization for bars.				
Bibliography				
In UTC-N Libraty				
1. Popa, AG – Strength of Materials. Theory and Practice, part 1 (to be published in 2019).				
2. Panțel, E., Ioani, A. M Lecții de Rezistența Materialelor (I), Ed. Napoca Star, Cluj-Napoca, 2002.				
3. Gere, J Mechanics of Materials, Fifth edition, Brooks/Cole, Pacific Grove, CA, 2001.				
On-line bibliography and in others libaries				

1. Curs și probleme de Rezistența Materialelor de la Universitatea Wisconsin (SUA).

http://physics.uwstout.edu/statstr/Strength/index.htm

2. Curtu, I., Repanovici, D. - Mecanică și Rezistența Materialelor, Vol. 1 și 2, Ed. Infomarket, Brașov, 2000, ISBN 973-99827-7-8.

3. Simulescu, I. - Lectures in Mechanics of Materials (I), Ed. Conspress, Bucureşti, 2004, ISBN 973-7797-25-6.

8.2. Applications/Seminars	Teaching methods	Notes		
1. Schematization of elements and loads. Reactions in the				
supports of statically determined bars.				
2. Internal actions in the cross-section of statically determined				
bars. Simple diagrams of the internal actions				
3. Diagrams of the internal actions. Superposition of effects. Use				
of the symmetry and non-symmetry.				
4. Diagrams for columns, Gerber beams.				
5. Stretching test for the mild steel (experimental work). Strain –	Presentation and			
stress diagram. Determination of the mechanical characteristics:	solving of typical	Decian		
yielding stress, ultimate stress, modulus of elasticity, necking.	problems,	Design		
Geometrical characteristics for plane figures.	individual	standards,		
6. Axial action: verification, design and bearing capacity.	application	application		
7. Axial action: internal actions in statically indeterminate	solving,	individual		
structures (loads, variation of temperature, inaccuracy of	experimental	sciontific		
execution etc.).	testing,	scientinc		
8. Riveted / bolted joints: verification, design, bearing capacity.	participative	Calculator		
9. Welded joints: verification, design, bearing capacity.	discussions			
10. Strength calculation for beams (verification, design).				
11. Bearing capacity of beams. Capable force. Diagrams of normal				
and shear stresses in a cross-section.				
12. Deflection of bent beams: the method of the conjugate beam.				
Synthesis problems for bending.				
13. Torsion: strength calculation for circular and ring-shaped				
cross-sections. Free torsion of thin-walled bars with open profile.				
14. Free torsion of bars with hollow cross-section. Recapitulation.				
Bibliography				
In UTC-N Library				
1. Popa, AG – Strength of Materials. Theory and Practice, part 1 (to	be published in 2019).		
2. Popa, AG, Besoiu, T, Botez, M, Buru, M, Marchis, A – Indrumator	de lucrari Rezistenta	materialelor (I),		
UTPRESS, 2017				
3. Gere, J Mechanics of Materials, Fifth edition, Brooks/Cole, Pacif	ic Grove, CA, 2001.			
4. Ille, V., Bia, C., și alții - Rezistența Materialelor, culegere de proble	eme, Litografia IPC-N	, Cluj-Napoca,		
1987.				
5. Marțian, I., Cucu, H. L Probleme de sinteză din Rezistența materialelor; Ed. U.T. Pres, 2004.				
6. Popa, A.G Rezistența Materialelor (I). Îndrumător de lucrări (editie pe CD), UTPRESS, Cluj-Napoca,				
2010.				
On-line bibliography and in others libaries				
1. Curs și probleme de Rezistența Materialelor de la Universitatea Wisconsin (SUA).				
http://physics.uwstout.edu/statstr/Strength/index.htm				
2. Vlad, I.M Strength of Materials. Selected Problems, Ed. Tehnopress, Iaşi, 2004, ISBN 973-702-028-6.				

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competences are necessary for the civil engineers who activate both in design and execution enterprises and are fundamental for the students attending the master programs or Ph. D. in Civil Engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			final grade		
10.4 Course	Two theoretical subjects	Oral presentation and			
		examination	40%		
		Duration: 1 hour			
10.5 Applications	Three practical	Written examination			
	applications (problems)	Duration: 2-2.5 hours (closed	60%		
		book)			
10.6 Minimum standard of performance					

Graphical representation of the construction elements, the actions as well as the results of the strength calculation (internal actions' diagrams, stress diagrams, deformed axis, characteristic curves of the material, etc.).

Design, checking and determining the capable load for the main strength elements, made of classic materials and subjected to standard loads.

(a) Minimum conditions to be admitted at the examination: minimum 8 precences at the application sessions and minimum 8 homeworks submitted in time.

The application mark* (in the electronic catalogue): minimum 5 (five)

*is calculated with the following relationship:

[(nr.of presences at the application sessions/nr. of sessions) + (nr. of submitted homeworks/nr.of given homeworks)] x 10/2.

(b) Application mark (A): minimum 5 (five). If the mark is < 5, the student is eliminated from the oral examination.

(c) Oral examination mark (O): minimum 5 (five).

Examination Mode	The examination (E) is sustained in the examination session, refers to the who			
	curricula and consists in 2 tests:			
	- A written test of 2 -2.5 hours; the students has to solve 3 problems with			
	medim degree of complexity (P = mark for the written test)			
	- An oral test consisting in the prsentation of the theoretical aspects for 2			
	subjects extracted aleatory (O = mark for theoretical konwlege).			
Components of the	1) The application mark (A) has 2 components: A = P + (EV), where:			
mark	- P is the mark for the written test (applications)			
	- (EV) is the evaluation during the semester and is calulated as follows:			
	(EV) = [(nr.of presences at the application sessions/nr. of sessions) + (nr. of			

	submitted homeworks/nr.of given homeworks) + (nr. of participations at the courses/nr. of courses] x 1/3. This component influence favourably the final notation for the written test and is taken into account only if (EV) \geq 0.5. Below this value the activity during the semester is considered unsaitsfatory and is not taken into account.		
	If the application mark $A < 5$ (five) the student is not eligible for the oral examination.		
	2) The mark for the oral examination (O) is the arithmetic medium of the 2 theoretical subjects presented.		
Formula for calculation	E= 0.6(A) + 0.4(O).		
	The discipline is passed and the student obtains the credits only if: $E \ge 5$, with the restriction that $A \ge 5$ and $O \ge 5$.		
	OBSERVATIONS: The written examination mark (P) ≥ 5 is recognized during all examinations organized in the same session.		

Date of filling in: 01.10.2019		Title Surname Name	Signature
	Lecturer	Conf. dr. eng. Anca Gabriela POPA	
	Teachers in charge of application	Lecturer dr. eng. Horatiu Mociran	

 Date of approval in the department Mechanics of Constructions
 Head of department

 October 2019
 Prof.dr.ing. Cosmin Gruia CHIOREAN

 Date of approval in the faculty of Civil Engineering
 Dean

 October 2019
 Conf.dr.ing. Nicolae CHIRA