SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Structural Mechanics
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	CCIA English/Engineer
1.7	Form of education	Full time
1.8	Subject code	33.00

2. Data about the subject

2.1	Subject name	Statics II				
2.2	Subject area					
2.3	Course responsible/lecturer	Prof. dr .ing. Mircea Petrina/Asist. ing.Moldovan Ilinca				
2.4	Teachers in charge of seminars	Asist. ing.Moldov	an Ilinca	1		
2.5	Year of study III 2.6 Semester	1	2.7 Assessment	Exam	2.8 Subject category	DID

3. Estimated total time

3.9

3.1 Ni	umber of hours per week	5	3.2 of wh	nich, course:	3	3.3 applications:	2
3.4 To	otal hours in the curriculum	70	3.5 of wh	nich, course:	42	3.6 applications:	28
Individual study					hours		
Manu	ual, lecture material and notes, b	ibliograp	ohy				40
Supp	lementary study in the library, o	nline and	d in the fi	eld			12
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					28		
Tutoring					6		
Exams and tests					-		
Other activities					-		
3.7 Total hours of individual study 86							
3.8	Total hours per semester		156				

4. **Pre-requisites (where appropriate)**

Number of credit points

4.1	Curriculum	Courses of Mechanics I, Strength of Materials I, Statics I
4.2	Competence	

6

5. Requirements (where appropriate)

5.1	For the course	Amphitheater with blackboard
5.2	For the applications	Classroom with blackboard, calculators

6. Specific competences

-	1	F
		Theoretical knowledge:
		-applying building and design codes;
		-idealizing structures- simplified physical model of the structure and its supports as well as the
_	s	applied loads;
ona	nce	-establish the determinacy, indeterminacy, and stability of structures;
Professional	competences	-equations of static equilibrium and construction conditions;
rofé	duic	-writing expressions for internal forces at any section in terms of external loads;
Ū.	ö	-constructing the internal forces curves;
		-sketching the deflected shapes of loaded beams and frames;
		-how to position live loads to maximize the value of a certain type of force at a designated section
		of a structure.
	s	The structural engineer interacts continuously with other engineers and architects. The structural
0	nce	engineer is responsible for the creation of a structural system in harmony with each of the
Cross	competences	architectural alternatives, sizing the elements in the structure to determine the feasibility and to
0	duid	estimate the construction cost. A large number of structural engineers are engaged in the research
	ö	field.

7.	Discipline objectives	(as results from	the key competences	gained)
----	------------------------------	------------------	---------------------	---------

		Fundamental concepts must be mastered by any student to
		applying them to the solution of problems through using classical
		method, which focus on specific modes of structural response
7.1	General objective	and behavior, before proceeding with the more general matrix
/.1	General objective	methods. Structural analysis teaches the student to determine the
		response of a structure to specified loads and actions, response
		measured by establishing the forces and deformations throughout
		the structure.
		The engineer will be required to make many technical decisions
	Specific objectives	about structural system: selecting an efficient, economical and
7.2		attractive structural form, evaluating its safety (stiffness and
		strength), and planning its erections under temporary
		construction loads.

8. Contents

8.1. L	ecture (syllabus)	Teaching methods	Notes
1.	Limit states. Ultimate and serviceability limits.		
	Characteristic material strengths and Characteristic actions.		
	Partiak factors of safty. Combinations of actions.		
	Analysis of indeterminate structures by the flexibility		
	method:concept of a redundant,fundamentals of flexibility		
2.	method. Analysis of indeterminate structures by the	(a atura with	
	flexibility method:support settlements,temperature change	Lecture with discussions	
	and fabrication errors.	discussions	
	Analysis of indeterminate structures by the flexibility		
3.	method: analysis of structures with several degrees of		
	indeterminacy, beam on elastic supports, practical design.		
4.	Analysis of indeterminate structures by the flexibility		

	method:continuous beams with three-moment equation.		
	Space structures:pin-jointed space frames (space truss	-	
	structures), stability and determinancy, joint equilibrium		
5.			
	equations (matrix method), plane structures loaded normal		
	to their plane.		
~	Analysis of indeterminate beams and frames by the slope-		
6.	deflection equations:kinematic indeterminacy,derivation of		
	the slope-deflection equations, use of symmetry.	-	
7.	Analysis of structures without sidesway and analysis of		
	structures that are free to sidesway.	-	
8.	Moment Distribution:Hardy Cross procedure,development		
	of the M.D. method, frames with no joint translation.		
	Moment Distribution: frames with side sway, support		
9.	settlements, fabrication errors and temperature		
	change(linear and nonlinear).		
	Influence lines for indeterminate structures:construction of		
	influence lines using moment distribution, Muller-Breslau		
10.	principle, qualitative influence lines for beams and		
	frames, influence lines for continuous beams, live load		
	patterns to maximize forces in multistory buildings.		
	Approximate analysis of indeterminate structures:guessing		
11.	the location of inflection point, estimating deflections of		
	trusses.		
	Approximate analysis of indeterminate		
12.	structures:approximate analysis of a multistory rigid frame		
12.	for given loads, analysis of unbraced frames for lateral loads		
	by portal and cantilever method.		
	Plastic analysis:moment-rotation characteristics of general		
13.	cross section, plastic hinge, plastic moment, effect of axial		
	force on the plastic moment capacity.		
14.	Matrix structural analysis-truss structures		
8.2. A	Applications/Seminars	Teaching methods	Notes
1	Flexibility method applied to a frame statically		
1.	indeterminate of degree one:internal forces curves.		
	Flexibility method applied to a frame statically	1	
2.	indeterminate of degree two:internal forces curves.		
	Flexibility method applied to a frame statically	1	
	indeterminate of degree one, loaded with support		
3.	settlement,temperature change and fabrication error,internal	Problems solving	
	forces curves.	with discussions	
4.	Continuous beams solved with the three-moment equation.		
	Slope-deflection method: frames without sidesway(frame		
5.	with one joint), internal forces curves.		
	Slope-deflection method:frames without sidesway(frame	1	
6.	with two joints), internal forces curves.		
7.	Slope-deflection method:frames with sidesway.	1	
/•	stope deficed on method. numes with sidesway.		

0	Slope-deflection method:frames without sidesway solved
8.	with Cross method.
9.	Slope-deflection method:frames with sidesway solved with
9.	Cross method(one joint frame).
10.	Slope-deflection method:frames with sidesway solved with
10.	Cross method(two joints frame).
11.	Influence lines for indeterminate frames.
12.	Influence lines for continuous beams.
	Approximate analysis of indeterminate structures :analysis
13.	of unbraced frames for lateral loads by portal and cantilever
	method.
14.	Plastic analysis:plastic hinge.
Biblio	ography

- 1. White, R.N., Gergely, P., Sexsmith, R.G., Structural Engineering, volume 1 and 2, John Wily&Sons, NY., 1976.
- 2. West,H.H., Fundamental of Structural Analysis, John Wily&Sons, NY., 1993.
- 3. Kassimali, A., Structural analysis, PWS-KENT publishing Co., Boston, 1993.
- 4. Gali, A., Neville, A.M., Structural Analysis-a unified classical and Matrix Approch, E&FN Spon, London, 1997.
- 5. Catarig, Al, Petrina, M., Statica Constructiilor-Metode de calcul si aplicatii, Ed. Dacia, Cluj-Napoca, 1991.
- 6. Mazilu, P., Statica Constructiilor, vol. 1 and 2, Ed. Tehnica, Bucuresti, 1955, 1959.
- 7. Catarig, Al, s.a., Statica Constructiilor(Teorie si aplicatii)- Structuri static determinate, Vol.1. Editura U.T.Pres, Cluj-Napoca,2003.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired skills will be needed for civil engineers who work in design and buildings firms, and are fundamental for those who will follow master and doctoral programmes in the field of Civil Engineering.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade				
Course	2 theory subjects	Written examination	40%				
Applications	3 problems	Written examination	60%				
10.4 Minimun	10.4 Minimum standard of performance						
The minimum average mark of the two theory subjects is 5 (five).							

Attendance at laboratory works, solving and submitting homework is mandatory under the provisions of ECTS Regulation.

Date of filling in October, 10-2019

Teachers in charge of seminars Asist.ing.Moldovan Ilinca Prof. dr. ing. Mircea Petrina Head of department Prof. dr. ing. Cosmin Chiorean

Date of approval in the department