SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Structural Mechanics
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Civil, industrial and agricultural buildings
1.7	Form of education	Full time
1.8	Subject code	37

2. Data about the subject

2.1	Subject name			Theory of Elasticity and Plasticity				
2.2	Course responsible/lecturer				Assoc. prof. Mihai Nedelcu			
2.3	Teachers in charge of seminars			Assoc. prof. Miha	i Nedelc	u		
2.4 ۱	/ear of study	3	2.6 Semester	1	2.7 Assessment	E	2.8 Subject category	DD/DI

3. Estimated total time

3.1 N	umber of hours per week	3	3.2 of w	hich, course:	2	3.3 applications:	1	
3.4 To	otal hours in the curriculum	75	3.5 of w	hich, course:	28	3.6 applications:	14	
Individual study							hours	
Man	ual, lecture material and notes,	bibliogr	aphy				13	
Supplementary study in the library, online and in the field						3		
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						17		
Tutoring								
Exams and tests						3		
Other activities								
3.7	3.7 Total hours of individual study 33							

3.8	Total hours per semester	75
3.9	Number of credit points	3

4. Pre-requisites (where appropriate)

4.1	Curriculum	Pass the discipline "Strength of Materials"
4.2	Competence	Mathematic Analysis and Special Mathematics

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

		Define the computational model in the theory of elasticity and plasticity; the difference between
	S	the linear and nonlinear analysis from the physical and geometric point of view. Define the
		stress/strain state, the stress/strain tensors, the displacement state. The general equations of
_		theory of elasticity. Solving the classic problems of plane state using analytical solutions and the
ona	nce	stress function F(x,y). Its mechanical interpretation on the contour of a 2D structural element.
essi	compete	Analysis of dams, supporting walls, tunnels using the strain plane formulation. The behaviour of
rof		plane plates (slabs) under different loading/boundary conditions. The use of numerical methods,
<u>а</u>		in particular the Finite Difference Method to find the solution for deep-beams, walls, slabs etc.
		C2.3. Using the computational methods specific to each structural type and the design methods
		of the components of civil, industrial and agricultural buildings in order to develop the required
		technical documentation.
(0		The correct idealisation of the structural elements based on the admitted fundamental
nces		assumptions. Classification of the structural elements based on their dimensions, loading and
etei		boundary conditions to find the adequate analysis method. The loading representation in
dub		trigonometric series in order to impose the boundary conditions. Verification of the applicability
s co		limits of the analytical formulations. Necessary knowledge for the accurate design of the
Cros		bidimensional elements acted in and out their plane.
0		CT2. Applying the efficient techniques of teamwork, on different levels of hierarchy.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Adapting the analysis methods used for the civil, industrial and agricultural buildings to their specific behaviour.
7.2	Specific objectives	Understanding the displacement and stress formulations for the problems of the Theory of Elasticity. Elimination of the simplifying assumptions used by the Strength of Materials for the structures made of bars.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1.	General equations and principles of the theory of elasticity.3-		
	Dimensional elasticity.		
2.	Plane elasticity in Cartesian coordinates, different		
	formulations.	ls,	
3.	Stress function and its mechanical interpretation on the	sion	
	contour.	cus:	
4.	Polynomial solutions. Trigonometric series solutions and finite	dise	
	differences.	on, nta	
5.	Deep beams.	tatio ese	L
6.	Plane problem in polar coordinates.	t pr	ecto
7.	Different formulations of the plane solution in polar	pre	roj
	coordinates. Axial symmetric state.	sic	d 0
8.	Free torsion of non-circular prismatic bars.	Clas	vide

9.	The Prandtl membrane analogy. Plastic torsion.					
10.	Flat plates. Assumptions. Displacements, strains, stresses.					
11.	Internal forces. Differential equation of the plates. Boundary conditions.					
12.	Solutions for the rectangular plate. Polynomial, trigonometric and finite differences solutions.					
13.	Circular plates. Differential equation. Axial symmetric state.					
14.	Plastic analysis of the plates.					
1. 2. 3. 4. 5.	Ioani, AM, Nedelcu, M., <i>Theory of Elasticity</i> , U.T.PRES, Cluj-Napo Precupanu, D., <i>Theory of Elasticity</i> , Technical University "Gh. Asac Faculty, Iasi, 1996. Boresi, A.P., Schmidt, R.J., Sidebottom, O.M., <i>Advanced Mechanic</i> Sons,Inc., New York,1993. Szilard, R., <i>Theory and Analysis of Plates</i> , Prentice Hall, Inc.,Englew Bia, C., Ille. V., Soare, M.V., <i>Rezistența materialelor și Teoria ele</i> București 1983.	oca, 2014. chi", Civil Engineering cs of Materials, fifth o vood Cliffs, New Jersey asticității, Edit. Didact	and Architecture ed., John Wiley & y,1974. ica și Pedagogică,			
8.2.	Applications/Seminars	Teaching methods	Notes			
1.	Beam in pure bending analyzed by the tools of the Theory of Elasticity.	i, outer	-0ə			
2.	Stress function. Cantilever beam acted by a force at the free end.	ussions 5, comp	ab, vid			
3.	Strains and stresses in beam flange. Calculation of the plate active width.	n, disci tation	e Matl			
4.	Use of FDM for the deep beams analysis.	atio	war			
5.	Solution of the plane plate problem using simple and double trigonometric series.	esenta int pre ning	r, soft			
6.	Use of FDM for the rectangular plate analysis.	c pr rPo	ute			
7.	Plastic analysis of the rectangular plates using the yield lines theory.	Classi Powe progr	Comp projec			
	Bibliography					
Bibl	ography					
Bibl 1.	Iography Ioani, AM., Danciu A., Mociran H., Theory of Elasticity – Examples 2011.	s and Problems, U.T.PI	RES, Cluj-Napoca,			

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired competences will be necessary to the future employees of the structural design companies.

10. Evaluation

	10.1 Accordment aritaria	10.2 Assessment methods	10.3 Weight in the	
Activity type	10.1 Assessment cittena	10.2 Assessment methods	final grade	
10.4 Course	Presenting 2 theoretical	Oral presentation – examination	60%	
10.4 Course	subjects.	duration 1 hour		
10 C Applications	Coluing 1 problem	Oral presentation - examination	200/	
10.5 Applications	Solving I problem.	duration 1 hour	30%	

10.5 Applications	Preparing 7 Homeworks during the semester.	Oral presentation	10%		
10.6 Minimum standard of performance					
Correct presentation of at least 50% of each theoretical subject, solving at least 50% of the problem and					
deliver the 7 Homeworks as scheduled.					

Date of filling in: Sept.2019		Title Surname Name	Signature
	Lecturer	Assoc. prof. Mihai Nedelcu	
	Teachers in charge of application	Assoc. prof. Mihai Nedelcu	

Date of approval in the department

Head of department Prof. Cosmin G. Chiorean

Date of approval in the faculty

Dean Assoc. prof. Nicolae Chira