SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Civil Engineering
1.3	Department	Structures
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	CCIA English/Engineer
1.7	Form of education	Full time
1.8	Subject code	31.00

2. Data about the subject

2.1	Subject name			Reinforced and Prestressed Concrete I				
2.2	2.2 Subject area			Civil Engineering				
2.3	.3 Course responsible/lecturer			Lecturer phd.eng. Olar Radu – radu.olar@dst.utcluj.ro				
2.4	2.4 Teachers in charge of seminars			Dumitru Moldova	an			
2.5	Year of study	2	2.6 Semester	2	2.7 Assessment	С	2.8 Subject category	DID DI

3. Estimated total time

3.1 Ni	umber of hours per week	5	3.2 of which, course:	3	3.3 applications:	2
3.4 To	otal hours in the curriculum	70	3.5 of which, course:	42	3.6 applications:	28
Individual study						24
Manual, lecture material and notes, bibliography					6	
Supplementary study in the library, online and in the field					9	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays				6		
Tutoring					7	
Exams and tests					2	
Othe	r activities					1
3.7 Total hours of individual study 55						
3.8	Total hours per semester		125			
3.9	Number of credit points		5.0			

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	The strength of materials and statisc knowledges.

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

Professional competences	The physical and mechanical properties of the concrete and reinforcements The ultimate and serviceability limit states of the reinforced concrete elements subjected to different loads The rules of the Eurocode 2 regarding the design of reinforced concrete elements
Cross competences	 to realise destructive and nondestructive tests on simple concrete, reinforcement and reinforced concrete elements, to design the reinforced concrete elements subjected to different types of loads to check the reinforced concrete elements to the ultimate and serviciability limit states

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	The proper knowledge of specific terms in the concrete design domain
7.2	Specific objectives	to be able to design reinforced concrete structural elements

8. Contents

X Lecture (syllabus)		Teaching	Notes
0.1	. Lecture (synabus)	methods	NOICS
1.	Introductive Lecture 1		
2.	Introductive Lecture 2		
3.	Definition of the Limit State. Factors of Safety. Analysis of the Structure. Analysis of the Section.		
4.	Materials. Concrete.	The courses are	
5.	Materials. Steel reinforcements.	presented both in	
6.	Work stages. Theory of Bending.	a traditional and	
7.	Reinforced Concrete Beams. Capable moment. Singly reinforced sections.	multimedia way, the students can	
8.	Reinforced Concrete Beams. Double reinforced sections. Flanged Section in Bending.	interfere with	
9.	Reinforced Concrete Beams. Shear behaviour.	questions and	
10.	The design of reinforced concrete elements to shear force.	discussions are	
11.	Torsion design of reinforced concrete elements.	possible	
12.	Reinforcing rules and presciptions for beams.		
13.	Serviciability Limit States.	1	
14.	Control of Cracks Widths. Calculation of Deflection.	1	
Bib	liography		
	he UTC-N library		

1. T. Oneţ, Radu OLAR - Reinforced Concrete Handbook part.1, UT Press 2010

2. T.Onet, R.Olar - Beton Armat, UTPress 2003

3. Z. Kiss, T. Oneț - Proiectarea structurilor de beton după SR - EN 1992-1, Abel 2008

- 4. G. Viorel, C. Măgureanu, Z. Kiss Îndrumător laborator, litografie IPCN, 1983
- 5. C. Măgureanu, T. Oneț Betonul, UTPres, 1996
- 6. T. Oneţ, T. Clipii, A. Cuciureanu Betonul structural, Editura Societatea Academică MATEIU BOTEZ, Iași 2006
- 7. I. Cadar, T. Clipii, A. Tudor Beton Armat, Timişoara, 1999

Virtual didactic materials

1. Movies with tests on reinforced concrete elements.

8.2. A	applications/Seminars	Teaching methods	Notes
1.	Introduction. Safety rules. Concrete mixture receipt for experimental elements.		
2.	Practical work – the reinforcements for test elements		
3.	Practical experiments – the cast in of a test reinforced concrete beam		
4.	The design of a reinforced concrete beam, simply supported (1)		
5.	The design of a reinforced concrete beam, simply supported (2)	D' (
6.	The design of a singly reinforced concrete beam – rectangular section	— Direct	
7.	The design of a double reinforced concrete beam – rectangular section	involvement of the student in	
8.	The design of a singly reinforced concrete beam – T section	the problems	
9.	Test 1 – The design of a simply supported beam to bending moment.	solving process	
10.	The design to shear force (1)	solving process	
11.	The design to shear force (2)		
12.	Test 2 – The design to shear force of a simply supported beam.		
13.	Experimental test on the initial reinforced concrete beam		
14.	Resume. Tests recoveries.		
Bibli	ography		

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

During the semester period, visits on the construction sites can be organised in order to be presented to students practical aspects related with the execution and structural design of the structural reinforced and prestressed elements. Direct contact with the representatives of the companies are possible.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
Course	Quality evaluations performed by analysis, synthesis, generalization of data obtained through its own investigation and acquirements	The evaluation consist in the knowledges verification, the problems solving and theory (questions), in writing (1.00+1.00 hours)	Problem (P) – 20% Theory (T) – 60%			
Applications	Test 1 (week 9)	Application test	(t1) – 10%			
	Test 2 (week 12)	Application test	(t2) – 10%			
10.4 Minimum standard of performance: $N = 0.6 \cdot T + 0.20 \cdot P + 0.10 \cdot t1 + 0.10 \cdot t2 \ge 5.00$						
	$(t1 \ge 5, t2 \ge 5, P \ge 5 \text{ and } T \ge 5)$					

Date of filling in:		Title Surname Name	Signature
07.11.2018	Lecturer	PhD.Eng. Radu OLAR	
	Teachers in charge of	Phd.Eng. Dumitru Moldovan	
	application		

Date of approval in the department

Head of department Conf. Dr. Ing. Attila Puskás

Date of approval in the faculty

Dean Conf.dr.ing. Nicolae CHIRA