

SYLLABUS

1. Overview : Steel – Concrete Composite Structures (SCCS)

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Construction
1.3	Department	Engineering Structures
1.4	Specialty area	Civil Engineering
1.5	Degree	BSc
1.6	Specialty /Qualification	Civil Engineering / Design Engineer
1.7	Study form	RSF - Regular Study Form
1.8	Code	SCCS

2. Course details

2.1	Course name		S	Steel – Concrete Composite Structures
2.2	Subject area		С	Civil Engineering
2.3	Course responsible		С	conf. dr.ing. Zsolt NAGY
2.4	Instructor		C	conf. dr.ing. Zsolt NAGY
2.5	Year of study IV 2.6	Semester 2	2	2.7 Evaluation Exam 2.8 Type of discipline Optional

3. Total estimated time

Year /	Course name	No. of weeks	Lectures Applications		Lectur es				Individu al study		dits		
Sem			[hou	ır/week]		[hour/week]			101	Credits			
				S	L	Ρ		S	L	Ρ			0
II	Steel – Concrete Composite Structures	14	2	-	-	2	28			28	74	130	5

3.1	Hours no. per week	4	3.2	Lecture	2	3.3	Applic.	2
3.4	Total hours education plan	130	3.5	Lecture	28	3.6	Applic.	28
Indiv	vidual study			•				Hour
Stud	ly following manual, lecture su	upport	, bibliog	raphy and pe	ersonal n	otes		20
Supp	plementary study in library, ele	ectron	ic platfo	orms, site visit	t			8
Prep	paring seminars/labs, tasks, re	ports,	portfoli	io, essay				28
Tuto	rial							14
Examination					4			
Other activities						-		
3.7	Total hours individual stu	dy	74					
20	Total hours par competer	•	120					

3.8	l otal hours per semester	130
3.9	Credits	5

4. Prerequisites (if there is the case)

4.1	Of curriculum	N/A
4.2	Of competences	Exam of Steel Structures II.

5. Conditions (if there is the case)

5.1	Lecture development	N/A
5.2	Application development	N/A

6. Specific skills accumulated

<u>b. 3</u>	specific	skills accumulated
	Theoretical background, (What need to know)	The student shall be familiar with steel and concrete structural systems for buildings: columns, beams, floors, for single story (SS) and multi story (MS) buildings; The student shall be able to use /shall be familiar with design software's for steel and/or concrete structures.
Professional skills	Accumulated skills: (What will know)	 Performing the lectures and applications students will be able: to set up composite structural solutions (steel and concrete) for columns, beams, floors, for single story (SS) and multi story (MS) buildings to perform rational and economic design of composite beams, composite floors, composite columns, to design composite structures, using a number of available specific products, being able to define list of materials, execution details, to manage and check the designed construction works
	Accumulated abilities: (What kind of tools will be able to handle)	 Performing the lectures and applications students will be able to handle: design software's for composite column, composite beam and composite floor assemblies, design software's for complex structural applications which involves composite structures, BIM modeling technology to prepare design documentation for composite structures
Eurthor obillo	•	To apply accumulated skills in order to improve the performance in team working, on site or in a design office; To develop own and responsible strategy following the principles, codes and professional ethics.

7. Course objectives (resulting from accumulated skills)

7.1	General objective	Design of steel-concrete composite structures for SS				
		and MS structures for different applications				
7.2	Specific goals	 Set up of structural solutions for SS and MS structures using composite columns, beams and floors; Quick and efficient design of composite columns, composite beams and composite floors; 				
		 To prepare design documentation for composite structures; To familiarize with existing composite technologies provided by specific companies in the construction market. 				

8. Topics

	Courses (program)	Methods	Notes
1	Introduction to composite construction of buildings		le
2	Introduction to EC4		tria
3	Structural modeling and design	su	snp
4	Composite Slabs with Profiled Steel Sheeting	sio	inc
5	Case studies – solution suppliers from the industry	Presentation and discussions	Video projector, internet for industrial examples
6	Shear Connectors and Structural Analysis	dis	et
7	Simply supported beams	pu	r, internet examples
8	Continuous Beams	na	int
9	Composite Columns	atio	e, or,
10	Composite joints	ente	ecto
11	Advanced composite floor systems	ese	roj
12	Introduction to Structural Fire Engineering	Ę	d o
13	Fire Engineering Design of Composite Structures		ide
14	Site visit		>
	Applications (seminar/jobs/project)	Methods	Notes
1	Task launch: design of composite beam		or
2	Configuration, evaluation, shuttering selection		ect
3	Design calculations of composite beam	Φ	oje
4	Design calculations of composite beam, sketches beam		Id (
5	Stage 1: deadline for composite beam design	rac	dec
6	Start of the project: design of composite beam		vio
7	Configuration, evaluation, Design calculations of composite	and	•
	column	K	are
8	Design calculations of composite column, sketches column	atic	twa
9	Stage 2: deadline for composite column design	- uta	sof
10	Start of the project: design of composite floor	Presentation and practice	Computer, software ,video projector
11	Design calculations of composite floor	– Ě	ute
12	Design calculations of composite floor, sketches floor	_	du
13	Stage 3: deadline for composite floor design	_	Cor
14	Presentations, Evaluation		0

References

1. EN 1994: Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings

- 2. Composite beams and columns to Eurocode 4 Publication no. 72-ECCS
- 3. Structural Steelwork Eurocodes Development of a Trans-national Approach

9. Topics set-up according to targeted groups (community, professional associations, employer companies) according to course subject area:

Accumulated skills will be necessary for those employees who will be involved in private or public institutions activities dealing with construction works, project management or quality assurance for residential or industrial constructions.

10. Evaluation

Activity	10.1	Evaluation criteria	10.2	Evaluation method	10.3	Final marking
Course		Essay, responding for 3 theoretical question		Written testing – 1,5-2 hour evaluation		60%
Application		Design application using personal computer		Practical testing – 1 hour evaluation		40%
10.4 Required minimum standard performance Solving the design application and responding for 2 theoretical questions						

Date	Course responsible	Instructor
15.10.2018	conf. dr. ing. Zsolt Nagy	conf. dr. ing. Zsolt Nagy

Acceptance date:	Head of Department :