SYLLABUS

1. Data about the program of study

1.1	1 Institution The Technical University of Cluj-Napoca		
1.2	Faculty	Faculty of Civil Engineering	
1.3	Department	Structures	
1.4	Field of study	Civil Engineering	
1.5 Cycle of study Bachelor of Science		Bachelor of Science	
1.6	Program of study/Qualification	Civil, Industrial and Agricultural Buildings /Engineer (English language)	
1.7	Form of education	Full time	
1.8	Subject code	30.00	

2. Data about the subject

2.1 Subject name	oject name Geote			ics				
2.3 Teachers in charge of laboratory			Conf.dr.ing. Nicoleta – Maria ILIEȘ, <u>nicoleta.ilies@dst.utcluj.ro</u>					
			S.L.dr.ing. Olimpiu Cristian MUREŞAN, olimpiu.muresan@dst.utcluj.ro					
			S.L	S.L.dr.ing. Iulia Consuela PRODAN, <u>iulia.prodan@dst.utcluj.ro</u>				
2.4 Year of study II 2.5 Semes		2.5 Semeste	er	2	2.6 Assessment	Е	2.7 Subject category	DD DI

3. Estimated total time

3.1 Number of hours per week	4	3.2 of which, course	:	2	3.3 applications	2
3.4 Total hours in the curriculum	104	3.5 of which, course	: 2	28	3.6 applications	28
Individual study						hours
Manual, lecture material and notes, bibliography						32
Supplementary study in the library, online and in the field						8
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						4
Tutoring						
Exams and tests						3
Other activities	Other activities					
3.7 Total hours of individual study 48						
3.8 Total hours per semester 104						

4. Pre-requisites (where appropriate)

3.9 Number of credit points

4.1 Curriculum	
4.2 Competence	

4

5. Requirements (where appropriate)

5.1. For the course	Cluj-Napoca, Str. G. Barițiu Nr. 25, Amphitheatre
5.2. For the applications	Cluj-Napoca, Str. G. Barițiu Nr. 25, Geotechnics Laboratory

6. Specific competences

υ	0000		ompetences
		_	Recognizing and using geotechnical terms in civil engineering field
			 Identifying and classifying soils;
			 Using soil parameters, determined in laboratory and in situ;
	ses		 Calculating soil stresses in soil massif;
	end		 Calculating soil settlement;
	Professional competences		 Calculating earth pressure;
	шo	—	After the study of the discipline, students are able to use the apparatus for the geotechnical
			tests: hygrometer, thermometer, oven, Proctor apparatus, direct shear test apparatus,
	onã		Oedometer, triaxial test apparatus etc.
	essi	-	Technological and economical design for geotechnical works,
	ofe	-	Organizing and conducting geotechnical works, for civil, industrial and agricultural buildings
	P	-	Following quality and durable development requirements specific to geotechnical works
		-	Responsible execution of professional tasks , in restricted autonomy conditions and qualified
			assistance: applying efficient and responsible work strategies, punctuality, reliability and
	ces		responsibility, based on principles, norms and professional ethics,
	eno	—	Acquaintance with roles and activities specific to team work and distributing tasks for
	s pet		subordinate levels,
	Cross competences	-	Awareness of lifelong learning; efficient use of resources and learning techniques for
	Οŭ		personal and professional development

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Development of competences regarding the soil behaviour as support for a constructions, as load and as construction material.					
7.2 Specific objectives	Assimilation of theoretical and practical knowledge regarding geotechnical parameters determination, soil settlement calculation, earth force calculation etc.					

8. Contents

0.1	9.1 Lastura (adlabus)		Notes	
8.1	. Lecture (syllabus)	methods	Notes	
1.	Introduction in geotechnics. Short history Soil composition and classification: Soil as three phase system. Solid			
	phase. Soil structure and texture. Soil grading curve.			
2.	Physical and mechanical soil properties. Liquid phase (water in soil). The			
	effect of surface phenomenon's on the behaviour of clayey soils.			
2	Capillary water. Free water.			
3.	Water mechanical action on soils. The prevention of hydrodynamic water effect. Iced water.			
4.	Soil compressibility: General information. Elastic compressibility. The	Locturo		
	principle of effective pressures and compaction law. One dimension	Lecture, discussions,	Video-	
	compression. Unconfined compression.	case studies	projector	
5.	The influence of stress history. The influence of cycling loading. The	etc.		
	anisotropy influence. The linear deformation modulus determination by			
	on site tests.			
6.	Soil shearing resistance. Soil shearing resistance. Soil shearing resistance			
	determination.	-		
7.	Soil shearing resistance tests. Factors influencing soil shearing			
	resistance. Soil shearing resistance determination by on site tests.	-		
8.	E. Stresses in the soil massif. General information. Vertical stress			
	generated by soil self-weight. Stresses due to a vertical point load on the			
	surface of elastic semi space. Stresses due to a linear load on the surface			

	of semi space. Distributed pressures on a continuous strip having B					
	width. Distributed pressures on a closed surface. Vertical stresses					
	distribution in layered soils.					
9.	The anisotropy influence. The influence of the limited thickness of the					
	deformable soil layer. Contact pressures distribution on the foundation					
	bottom.					
10.	Foundation soil settlement. Deformations. Methods to calculate					
	settlements. Semi theoretic computation methods. Consolidation					
	settlement computation. Constructions deformations types. The effect					
	of foundation displacements and deformations (settlements) on the					
	construction.					
11.	Soil lateral pressure. General information. Lateral pressure at rest lateral					
	pressure. Lateral soil pressure calculation: Definition of limit equilibrium					
	state; Active lateral pressure; Passive lateral pressure.					
12.	Methods based on wedge theory: Active lateral pressure -Coulomb's					
	theory. Active pressures distribution on retaining structures. Active					
	pressure calculation for layered soils. External loads influence. Passive					
	lateral pressure –Coulomb's theory.					
13.	Considerations on computation methods for soil lateral pressure. The					
	effect of retaining structure displacement on soil lateral pressure.					
14.	Soil lateral pressure on retaining structures. Retaining walls. Soil lateral					
	pressure on simple timbered retaining structures. Soil lateral pressure					
	on diaphragm walls. Soil lateral pressure on anchored diaphragm walls					
Ref	erences					
	1. Farcas, A.Popa, Geotehnica. Teorie si exemple de calcul, Ed. UTPress,	2014,				
	2. A. Popa, V. Farcaş, Geotehnică, UT Press, 2004					
	3. F. Mureşanu, Geotehnică, UT Press, 2001					
	4. A. Stanciu, I. Lungu, Fundații, vol I, , Ed. Tehnică, 2006					
	5. V. Pop, A. Popa, Geotehnică și fundații, Lito IPCN, 1983,					
	6. V. Farcas, N. Ilies etc., Geotehnica. Îndrumător de laborator, Ed. UTPress, 2014					
	 A. Popa, Geotehnică, Exemple de calcul, 1994 					
	8. V. Pop, A. Popa, Geotehnică. Îndrumător de laborator, Lito IPCN, 198	3,				
	9. A.Popa, col., Proiectarea fundațiilor, LitoIPCN, 1985.					
	10. A.Popa, col., Fundații în condiții speciale de fundare. Lito IPCN 1992,					
	11. SR EN 1997-1: 2006 Eurocod 7: Proiectarea geotehnică. Partea 1: Reg	guli Generale.				
	12. Geologie, Indrumător pentru lucrările de laborator, A. Suciu, 2002					
	13. Handy R.L., Spangler M.G. – Geotechnical Engineering					
	14. Braja M.D. – Principles of Foundation Engineering					
	15. Lio Cheng – Soils and Foundations					
	16. Bowels J.E. – Foundation Analysis and Design					
	17. Teng W. C. – Foundation Design					
		Teaching				
8.2.	Applications/Laboratory	methods	Notes			
1	Geotechnical indexes determination					
	Soil water content. Soil Consistency.					
3.	Grading curve determination. Applications	Lecture and				
	Proctor test	numerical	Computer,			
5. Soli permeability applications design						
6. Soil compressibility Laboratory tables						
	Soil shear resistance (I)	tests	,			
8. Soil shear resistance (II)						
	Swelling clays characteristics.					
10.	Applications					

11. Stress distribution in soil					
12. Settlement computation					
13. Soil lateral pressure					
14. In situ geotechnical indexes determination. Geotechnical rapport.					
Finalizing laboratory works.					
References					
1. SR EN 1997-2: 2007 Eurocode 7: Geotechnical deign. Partea 2: Soli testin	g and investigation.				
2. V. Farcas, N. Ilies etc., Geotehnica. Îndrumător de laborator, Ed. UTPress,	, 2014				
3. A. Popa, Geotehnică, Exemple de calcul, 1994					
4. V. Pop, A. Popa, Geotehnică. Îndrumător de laborator, Lito IPCN, 1983,					

5. A.Popa, col., Proiectarea fundațiilor, LitoIPCN, 1985.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Acquired competences are necessary for the civil engineers who activate both in design and execution companies.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment	10.3 Weight in the final					
Activity type	10.1 Assessment citteria	methods	grade					
	One numerical application and 3-4	Written test –	70% (50% theoretical					
10.4 Course	theoretical questions	duration: 2-2.5 hours	questions + 20% numerical					
			application)					
10.5	3 written test with 3-4 questions from		30%					
Applications	the laboratory tests completed during	duration: 15-20min/						
Applications	the semester	test						
10.6 Minimum	standard of performance							
 Course: nu 	merical application (min grade 5) and a	correct answer for all	the theoretical questions (for					
each theor	etical question the student will receive a	a grade, the minimum	grade for each question is 5)					
– Ift	he numerical application grade is <5, the	student is not eligible f	or the theoretical examination					
 Application 	- Application: If the tests grade is <5, the student is not eligible for the final examination. Attendance to							
the final Ge	the final Geotechnics exam is conditioned by attending all the laboratory classes and having a grade >							
to all the la	aboratory tests							

Date of filling in:		Title Surname Name	Signature
01.10.2019	Lecturer	Conf.dr.ing. Nicoleta Maria ILIEŞ	
	Applications	S.L.dr.ing. Olimpiu Cristian MUREŞAN	
		S.L.dr.ing. Iulia Consuela PRODAN	

Date of approval in the Structures Department council	Head of Department of Structures, Conf.dr.ing. Attila PUSKAS
Date of approval in the Faculty Council	Dean, Conf.dr.ing. Nicolae CHIRA