SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2 Faculty Faculty of Civil Engineering		Faculty of Civil Engineering
1.3	Department	Structures
1.4	Field of study	Civil Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	CCIA English/Engineer
1.7	Form of education	Full time
1.8	Subject code	

2. Data about the subject

2.1	Subject name				Steel Structures I			
2.2	Subject area				Structural Engine	ering		
2.3	Course responsible/lecturer				Associated Profes	sor loar	n Petran	
2.4	Teachers in charge of seminars				Lecturer Catalin N	Лода		
2.5 Year of study IV 2.6 Semester VII		2.7 Assessment	Exam	2.8 Subject category				

3. Estimated total time

3.1 Number of hours per week		6	3.2 of w	hich, course:	3	3.3 applications:	3
3.4 To	tal hours in the curriculum	84	3.5 of w	hich, course:	42	3.6 applications:	42
Individual study							
Manual, lecture material and notes, bibliography							30
Supplementary study in the library, online and in the field						9	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						28	
Tutoring						2	
Exams and tests						3	
Other activities							
3.7 Total hours of individual study 72							

5.7	rotar nours of marviadar study	72
3.8	Total hours per semester	156
3.9	Number of credit points	6

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	N/A

6. Specific competences

		Advantages and disadvantages of steel structures
la	ses	Standard tests on steel material
sior	tenc	Bolted connection types, characteristics, position
ofes	pei	Welded connections types and technology of welding
Pro	con	Cross section types for steel elements
		Steel elements subjected to axial loads
		Sizing and checking for a steel element subjected to tension and centric compression force
lces		European buckling curves and buckling resistance elements
eter		Bukling of uniform built-up members
am	compe	Restrained beams in bending
s co		Unrestrained members in bending
Cros		Elements in bending and compression(beam-column)
		Plated structural elements

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing ability to design steel elements
7.2	Specific objectives	Sizing and checking steel elements subjected to compression, bending, torsion and shear force

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
1.Failure of a structural member through buckling.Buckling due to		
elastic instability.Elasto-plastic buckling.Buckling coefficients		
2. The background of the European buckling curves. Buckling		
resistance of members		
3.Lateral torsional buckling.Buckling of uniform built-up members		
in compression		
4.Restrained beams in bending.Moment resistance of a		Design of
beam(cross-section), shear and torsion		pitchod roof
5.Elements in torsion.Uniform members in torsion EN	Presentation	steel portal
1993.Buckling resistance of members (lateral torsional buckling)	riesentation	frame structure
6.Unrestrained members in bending according to EN-1993.Lateral		Video-projector
torsional buckling curves		
7.Elements in bending and compression(beam-column).Types of		
loading.Types of cross-sections		
8.Elements in bending and compression(beam-column).Cross-		
sectional behavior		
9. Design of members in compression and axial bending. Lateral-		
torsional behaviour of beam-columns		

10.Plated structural elements EN 1993-1-5.Stiffeners.Behavior of
plated structural elements with slender web
11.Design of plated structural elements in bending.Web buckling
verification.Shear buckling coefficients
12.Plastic analysis of steel structures.Conditions for the
application of plastic analysis. Elasto-plastic behaviour and design
of elements
13.Fatigue strength of structural steel elements.Fatigue
strength.Fatigue verification
14.Recapitulation

Bibliography

1. Ioan Petran, Roland Mihai Senila – Design of pitched roof steel portal frame structure, Ed. Mediamira, Cluj-Napoca, 2017

2.SR EN 1993-1-8 Eurocode 3:Design of steel structures, 2006

3.ECCS No 126, TC 10 Structural Connections, European Recommendations for de design of Structural connections according to Eurocode 3, 2003

4. Arcelor profiles-Beams, channels and merchant bars, Arcelor Group, 2005

8.2. Applications/Seminars	Teaching methods	Notes
1. Design of a Single Bay Portal Frame. Geometry definition. Loads		
evaluation.Dead loads.Snow loads		
2.Loads evaluation.Wind loads.Seismical loads.Purlins design		
3.Main transversal frame.Load cases.Loads combination.ULS		
combination.SLS combination		
4.Presizing beam and columns.Results of the elastic		
analysis.Serviceability limit states.Ultimate limit states		
5. Column verification. Classification of the cross-section.		
Resistance of cross-section. Verification for shear force, axial force		
and bending moment		Design of
6.Column verification.Buckling resistance, buckling about y-y,	Brocontation	pitched roof
buckling about z-z.Lateral-torsional buckling.Calculation factor	workshop	steel portal
C _{my,0}	applications	frame
7.Column verification.Lateral-torsional buckling.Calculation	applications	structure
factors C _{my} and C _{m,LT} .		Eurocode 3
8. Column verification.Lateral-torsional buckling.Calculation		
factors C_{yy} , C_{zy} , k_{yy} si k_{zy} . Verification with interaction formulae		
9.Beam verification.Classification.Resistance of cross-		
section.Shear, compression and bending		
10.Beam verification.Buckling resistance.Buckling about y-y,		
buckling about z-z.Lateral-torsional buckling		
11.Beam verification.Lateral-torsional buckling.Calculation factors	1	
$C_{my,0},C_{my},C_{m,LT},C_{yy},C_{zy},k_{yy}$ and k_{zy} .Verification with interaction		
formulae		

12. Erection details, shop and erection drawings	
13.Erection details, shop and erection drawings	
14.Recapitulation, applications	

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

Skills for the future engineers in a frame of design companies and building companies

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade		
10.4 Course	5 question theory problems	Written exam – 2 hours	60%		
10.5 Applications	Design problem solving	Written testing – 45 minutes	40%		
10.6 Minimum standard of performance					
Every position must be ≥ 5 mark, including course and portal bay project design					

Date of filling in: dd.mm.yyyy		Title Surname Name	Signature
	Lecturer	Associated Professor Ioan Petran, Phd	
	Teachers in charge of application	Lecturer Catalin Moga, Phd	

Date of approval in the department

Head of department Conf.dr.ing Attila Puskas

Date of approval in the faculty

Dean Conf.dr.ing Nicolae Chira